Kempfert + Partner

Kempfert Geotechnik GmbH Hasenhöhe 128 22587 Hamburg

Mail hh@kup-geotechnik.de

Registergericht Amtsgericht Hamburg HRB 109428

Geotechnischer Bericht

(Rev. 01)

Ergebnisse der geotechnischen Untersuchungen zur Versickerungsfähigkeit und Gründungsempfehlung für Verkehrsflächen

Projektgebiet Fischbeker Reethen (Neugraben-Fischbek 67) - Erschließungsmaßnahmen

bearbeitet im Auftrag der **IBA Hamburg GmbH** Am Zollhafen 12 20539 Hamburg

Hamburg, den 14.05.2020

Az.: HH 261.0/17

Projekt-Ansprechpartner

Arbeitsschwerpunkte

Erkunden Beraten

Planen

Überwachen

Prüfen

Messen

Kempfert + Partner Gruppe

Hamburg

Würzburg

Konstanz

Anerkannte Sachverständige

Information www.kup-geotechnik.de

Zertifiziert nach ISO 9001:2015

Berichtsstatus

Rev.	Datum	aufgestellt	geprüft	Änderungen
00	05.01.2018			-
01	14.05.2020			Einarbeitung der Ergebnisse der zusätzlichen Baugrunduntersu- chungen gem. Abschnitt 1

Inhaltsverzeichnis

				Seite
1	Vera	nlassur	ng	5
2	Unte	erlagen,	, Normen und Regelwerke	5
3	Bauv	vorhabe	en/ Planungsrandbedingungen	6
4	Geo	technis	cher Untersuchungsbericht	11
	4.1	Baugr	rundaufschlüsse	11
	4.2	Baugr	rundschichtung	13
	4.3	Grund	dwasser	14
	4.4	Boder	nmechanische Laborversuche	15
		4.4.1	Wassergehaltsbestimmungen	15
		4.4.2	Glühverlustbestimmungen	16
		4.4.3	Kornverteilungen	16
	4.5	Chem	ische Analysen des Bodens (orientierende Untersuchung)	17
		4.5.1	Allgemeines	17
		4.5.2	Untersuchungsergebnisse und Handlungsempfehlungen	18
		4.5.3	Atmungsaktivität (AT ₄)	20
		4.5.4	Asphalt	21
		4.5.5	Analyse gem. BBodSchV (Wirkungspfad Boden-Mensch)	22
	4.6	Chem	ische Analytik des Wassers (orientierende Untersuchung)	22
		4.6.1	Beton- und Stahlaggressivität	22
		4.6.2	Einleitparameter bei einer Wasserhaltung (orientierende Untersuchung)	23
5	Ausv	wertung	g und Bewertung der geotechnischen Untersuchungsergebnisse	23
	5.1	Chara	kteristische Bodenkenngrößen für geotechnische Berechnungen	23
	5.2	Chara	kteristische Grund- und Schichtwasserstände	24

	5.3	Boden	klassifizierung und Homogenbereiche	25			
6	Folge	erunger	n, Empfehlungen und Hinweise	26			
	6.1	Geote	chnische Kategorie	26			
	6.2	Schlus	sfolgerungen für den Straßenaufbau	26			
		6.2.1	Allgemeines	. 26			
		6.2.2	Bereiche ohne Aufhöhung	. 27			
		6.2.3	Bereiche mit Aufhöhung / Torfüberbauung (Arbeitspapier Torfüberbauung von IPROconsult GmbH)				
	6.3	Ergänz	zende Geotechnische Hinweise für den Straßenbau	29			
	6.4	Bewer	tung der Versickerungsfähigkeit	30			
	6.5	_	uben für Bauwerke der Entwässerung (Drosselschächte, Behandlungsanlagen, nd Versorgungsleitungen				
		6.5.1	Allgemeines	31			
		6.5.2	Erforderliche Baugrubentiefen	31			
		6.5.3	Geböschte Baugruben / Baugrubenverbau	31			
		6.5.4	Bemessung der Verbauwände	. 32			
		6.5.5	Horizontale Stützung der Verbauwände	. 33			
	6.6	Wasse	rhaltungmaßnahmen	33			
	6.7	Schmu	ıtzwasserpumpwerk	33			
		6.7.1	Allgemeines, Herstellung und Gründung	. 33			
		6.7.2	Setzungen des Schmutzwasserpumpwerks	. 35			
		6.7.3	Verbauwände	. 35			
		6.7.4	Bemessung der Verbauwände	. 35			
		6.7.5	Wasserhaltung für das Schmutzwasserpumpwerk	. 35			
		6.7.6	Hinweise zur Bauausführung	35			
		6.7.7	Herstellung der Druckleitung	. 36			
	6.8	Östlich	ner Knoten der B73	37			
	6.9	Lärms	chutzwand an der Kommunaltrasse	37			
	6.10	Ehema	Ehemalige Panzerrampe von der Ecke Am Moor – Wegverbindung S-Bahn37				
7	Zusar	mmenf	assung	38			

Anlagenverzeichnis

Anlage 1	Übersichtslage plan
Anlage 2	Lageplan der Untergrundaufschlüsse
Anlage 3	Ergebnisse der Untergrundaufschlüsse (Anlagen 3.1 bis 3.20)
Anlage 4	Ergebnisse der bodenmechanischen Laborversuche
Anlage 4.1	Kornverteilungen
Anlage 4.2	Zusammenstellung der k _f -Werte
Anlage 5	Ergebnisse der chemischen Analysen
Anlage 5.1	LAGA-Analytik, Boden
Anlage 5.2	Probenliste der chemischen Analytik
Anlage 5.3	AT₄-Analytik, Torf
Anlage 5.4	PAK-Analytik, Asphalt
Anlage 5.5	BBodSchV-Analytik
Anlage 5.6	Wasseranalytik, Beton- und Stahlangriff und Einleitparameter
Anlage 6	Kennzeichnende Bodeneigenschaften der Schichten

1 Veranlassung

Die IBA Hamburg GmbH plant in Hamburg, Stadtteil Neugraben - Fischbek, die Erschließung und Vermarktung des Gebiets "Fischbeker Reethen (NF 67)". Das Erschließungsgebiet liegt nördlich der Cuxhavener Straße, weist eine Größe von ca. 70 ha auf und ist überwiegend unbebaut.

Als Grundlage für die weitere Planung soll eine Baugrunduntersuchung als Grundlage zur Konkretisierung der Fachplanungen "Verkehr" und "Oberflächenentwässerung" durchgeführt werden.

Hiermit sollen zum einen die technischen Randbedingungen hinsichtlich einer möglichen Oberflächenentwässerung sowie der Verkehrsanbindung des beplanten Gebietes in Erfahrung gebracht werden; zum anderen soll im Hinblick auf eine realistische Abschätzung von Kosten der Bodenentsorgung die chemische Belastung der anfallenden Aushubböden u.a. mittels LAGA-Analysen überprüft werden.

Wir wurden von der IBA Hamburg GmbH mit der Erstellung eines Geotechnischen Berichtes entsprechend der vorbeschriebenen Zielsetzungen beauftragt.

Der vorliegende Bericht in der Revision 01 (Rev. 01) beinhaltet Angaben und Empfehlungen unter Berücksichtigung von ergänzenden Baugrunduntersuchungen für die folgenden Bereiche, s. a. Abbildung 1 bzw. Anlage 2:

- Gewerbestraße bis nördlich der Bahnstrecke (Schmutzwasserdruckleitung),
- Vossdrift (Schmutzwassersiel),
- Westlicher und östlicher Knoten der B 73,
- Ehemalige Panzerrampe von der Ecke Am Moor Wegverbindung S-Bahn,
- Kommunaltrasse,
- Lärmschutzwand an der Kommunaltrasse und
- Torfüberbauung im Bereich der Gewerbestraße in ca. Bau-km 0+680.

Der nachfolgende Geotechnische Bericht in der Revision 01 (Rev. 01) ersetzt den Bericht vom 05.01.2018 (Rev. 0).

2 Unterlagen, Normen und Regelwerke

Für den Geotechnischen Bericht wurden folgende Unterlagen verwendet:

- U1 Kempfert und Partner Geotechnik, Hamburg, Schichtenverzeichnisse von 80 Kleinrammbohrungen und 8 leichten Rammsondierungen, Juni bis Oktober 2017
- U2 Gesellschaft für Bioanalytik (GBA), Pinneberg, Ergebnisse von 6 chemischen LAGA Analysen, PAK-Analysen, AT4-Analyse, Wasseranalysen auf Stahl- und Betonaggressivität und Einleitparameter, Dezember 2017

- U3 IBA Hamburg GmbH, Anlagen zur Angebotsabfrage zur Baugrunduntersuchung des Projektgebiets Neugraben Fischbek 67, 10.05.2017
- U4 IBA Hamburg GmbH, Lageplan der Bohrungspunkte mit Eigentumskarte (ohne Maßstab) Projektgebiet Neugraben Fischbek 67, 11.05.2017
- U5 IBA Hamburg GmbH, Versickerungsbereiche und Bohrpunkte NF 67 (Maßstab 1 : 4000), 17.08.2017
- U6 BWS GmbH, Hamburg, Städtebauliche Entwicklung Sandbek West in Hamburg-Harburg; Grundlagenermittlung und Teile der Vorplanung, 28.04.2016
- U7 BWS GmbH, Hamburg, Projektgebiet Fischbeker Reethen (NF 67); Planungsbegleitende Abstimmungen zum Grundwasserschutz, 18.07.2017
- U8 IBA Hamburg GmbH, Anlagen zur Angebotsabfrage: Baugrunduntersuchung als Grundlage zur Konkretisierung der Fachplanungen Verkehr und Oberflächenentwässerung Projektgebiet Fischbeker Reethen (Neugraben Fischbek 67), 14.11.2019
- U9 Kempfert und Partner Geotechnik, Hamburg, Schichtenverzeichnisse von 39 Kleinrammbohrungen und 15 leichten Rammsondierungen, Januar bis März 2020
- U10 IPROconsult GmbH, Hamburg, Neugraben Fischbek 67, "Fischbeker Reethen", Erläuterungsbericht, 28.02.2020
- U11 Gesellschaft für Bioanalytik (GBA), Pinneberg, Ergebnisse von chemischen LAGA Analysen und Wasseranalysen auf Stahl- und Betonaggressivität und Einleitparameter, Februar bis März 2020
- U12 Neumann Beratende Ingenieure GmbH, Hamburg, Angaben zum Schmutzwasserpumpwerk, Telefonat zwischen Hr. Handke (Ing.-büro Neumann) und Hr. Albrecht (Kempfert Geotechnik) am 01.04.2020

Im vorliegenden Bericht wird auf fachtechnische Normen und Regelwerke verwiesen. Bei allen nachfolgenden undatierten Verweisen auf Normen und Regelwerke gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen). Bei allen nachfolgenden datierten Verweisen auf Normen und Regelwerke gilt nur die in Bezug genommene Ausgabe.

3 Bauvorhaben/ Planungsrandbedingungen

Bei dem Untersuchungsgebiet handelt es sich um ein Erschließungsgebiet im Hamburger Stadtteil Neugraben-Fischbek. Das Grundstück liegt nördlich der Cuxhavener Straße an der Grenze zum Bundesland Niedersachsen. Die Grundfläche beträgt ca. 70 ha. Die Lage ist dem Übersichtslageplan auf Anlage 1 zu entnehmen.

Geomorphologisch liegt das Erschließungsgebiet im Übergangsbereich der Geest (Süden) zur Marsch (im Norden). Das Geländeniveau steigt von Nordosten mit den geringsten Geländehöhen

von ca. +3,6 mNHN nach Süden auf etwa + 14,0 mNHN an. Im Nordosten sind Torfböden mit einer maximalen Schichtmächtigkeit von 0,8 m vorhanden, s. Unterlage U6.

Derzeit wird das Erschließungsgebiet größtenteils landwirtschaftlich genutzt. Im Nahbereich der Cuxhavener Straße sind noch Gebäude und eine zwischenzeitlich rückgebaute Gleisanlage der ehemaligen Röttiger Kaserne vorhanden.

Im Planungsgebiet sind sowohl Gewerbeflächen (Norden und Westen) als auch Wohnbebauung vorgesehen. Zur Erschließung ist u. a. ein umfangreiches Straßen- und Wegenetz herzustellen, siehe nachfolgende Abbildung 1.

S.Bahn Linie

Gewerbe

Gewerbestraße

Gründerstraße

Gründerstraße

Gründerstraße

Gründerstraße

Gründerstraße

Gründerstraße

Gründerstraße

Fahrfrädab

stellanlage

Kommunaltrasse

Wohnen

De Gründerstraße

Fahrfrädab

stellanlage

Fahrfrädab

Abbildung 1: Straßennetznetz mit Straßennahmen (Arbeitstitel) nach Unterlage U10

Die nachfolgenden Planungsrandbedingungen sind in den Unterlagen U6, U7 und U10 aufgeführt bzw. wurden diesen entnommen.

Bemessungsgrundwasserstand / mittlerer höchster GW-Stand

Im Großteil der Planungsfläche stehen die Sande des 1. Hauptgrundwasserleiters, der bis in ein Tiefenniveau von ca. -50 mNHN reicht, unterhalb der Oberbodendeckschicht bis an die Geländeoberfläche an. Nur im Nordosten sind relevante Überdeckungen mit geringdurchlässigen Torfen


vorhanden. Das Grundwasser strömt im Bereich der Erschließungsfläche von Süden, aus dem Bereich der Geest, nach Norden.

Der Grundwasserstand im maßgebenden 1. Hauptgrundwasserleiter wird u.a. durch die Grundwasserentnahme des Wasserwerks Süderelbmarsch beeinflusst. Das Wasserwerk Süderelbmarsch, welches 1956 in Betrieb genommen wurde, befindet sich in einer Entfernung von ca. 1.500 m zum Planungsgebiet und umfasst sowohl Flach- als auch Tiefbrunnen. Die Beeinflussung des Grundwasserstandes durch das Wasserwerk wurde gem. Unterlage U6 aufgrund von Pegelmessungen mit einer Absenkung gegenüber unbeeinflussten Grundwasserständen von ca. 0,75 m ermittelt.

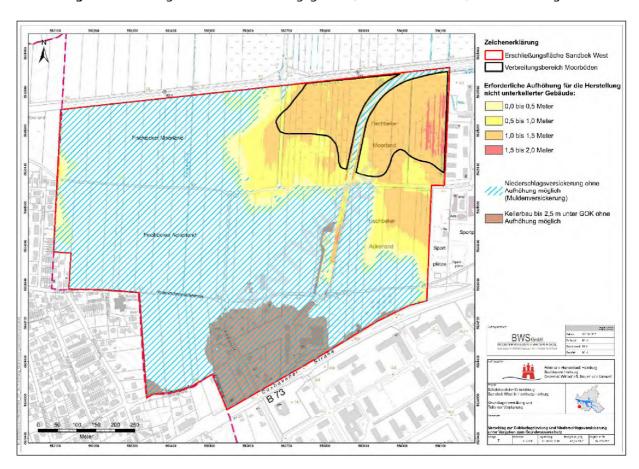
In Unterlage U6 (dort Anlage 6), s. a. nachfolgende Abbildung 2, sind die ermittelten Bemessungsgrundwasserstände und mittleren höchsten Grundwasserstände als Grundwassergleichen für das Planungsgebiet angegeben.

Bei der Angabe der Bemessungsgrundwasserstände wurde berücksichtigt, dass die Dauerhaftigkeit der Absenkung durch die Trinkwassergewinnung nicht gewährleistet werden kann.

Abbildung 2: Bemessungsgrundwasserstände mit Angabe des mittleren höchsten GW-Standes (Stand 27.04.2017) nach Unterlage U6

Versickerung / Oberflächenentwässerung

Gemäß der Vorplanung (Unterlage U6) soll dort, wo es möglich ist, das Niederschlagswasser versickert werden. Aus Gründen des Grundwasserschutzes (der Planungsraum liegt in der weiteren Schutzzone (Zone III) des Wasserschutzgebietes Süderelbmarsch) darf nur das gering verschmutzte Wasser versickert werden. Die Versickerung soll flächig über die belebte Bodenzone erfolgen. Ein


Abstand von 1,0 m von der Unterkante der Versickerungsanlage zum mittleren höchsten Grundwasserstand ist einzuhalten.

Wo die Schadstoffbelastung zu groß oder kein ausreichender Abstand zum Grundwasser vorhanden ist (oder durch Aufhöhung des Geländes hergestellt wird), soll eine Reinigung und verzögerte Ableitung über gedichtete Mulden-Rigolen Systeme erfolgen. Das geplante Ableitungsnetz des öffentlichen Mulden-Rigolen-Systems (Erschließungsstraßen) kann gedrosselte und gereinigte Abflüsse aus Privat- und Gewerbeflächen aufnehmen. Für die Ableitung sollen alle drei vorhandenen Gewässer (Rethenbek, Abzugsgraben Fischbek, Stargraben), die Richtung Norden entwässern, genutzt werden.

<u>Aufhöhungsbereiche</u>

Gem. der Vorgabe der IBA, dass Gebäudefundamente mind. 0,3 m oberhalb des Bemessungsgrundwasserstandes anzuordnen sind, ergeben sich Geländeaufhöhungen für das Planungsgebiet von bis zu ca. 1,5 m. Die Bereiche der Geländeaufhöhungen sind gemäß dieser Vorgabe in Unterlage U6 angegeben, s. nachfolgende Abbildung. Genaue Angaben zu den geplanten Höhen der Verkehrsflächen liegen uns derzeit nicht vor. Wir gehen z. Zt. davon aus, dass die späteren Verkehrsflächen überwiegend etwa in Höhe der heutigen Geländeoberkante liegen werden, s. a. Abschnitt 6.2.

Abbildung 3: Aufhöhungsbereiche im Planungsgebiet (Stand 24.04.2017) nach Unterlage U6

Für die Aufhöhungsbereiche gehen wir davon aus, dass die vorhandenen Oberböden bzw. Torfe überschüttet werden, s.a. nachfolgende Abbildung 4.

Grenze der potenziellen Einsickerung am der Basis des Aufhöhungskörpers

Aussickerung am Rand der geplanten Aufhöhung

Abbildung 4: Ein- und Aussickerung in den Aufhöhungskörper (Stand 18.07.2017) nach Unterlage U6

Abwasserleitungen

Die Abwasserleitungen sind bis zum geplanten Schmutzwasserpumpwerk, welches im Nordwesten des Planungsgebietes liegen soll (s. Anlage 2), im Freigefälle vorgesehen. Von dort aus soll das Abwasser in einer Druckleitung Richtung Norden bis zu den Überland-Druckleitungen (DR 700 und DR 350) nördlich der Bahnlinie gefördert werden. Alternativ wird zurzeit gem. Unterlage U10 der Anschluss der Druckleitung an eine vorhandene Leitung im Ohrnsweg geprüft. Der Ohrnsweg liegt am östlichen Rand des Planungsgebietes, s. a. Abbildung 1.

Aufgrund der geringen Grundwasserflurabstände und des erforderlichen hydraulischen Gefälles der Freigefälleleitungen wird voraussichtlich ein Großteil des Leitungsnetzes unterhalb des Grundwasserspiegels liegen. Die Mindesttiefe der Schmutzwassersiele ist gem. Unterlage U10 wg. der Hausanschlüsse mit 1,8 m unter der Geländeoberfläche vorgesehen.

Straßenunterbau und Leitungen

An der Basis des Oberbaus (Planum) der Straßen erfolgt die Herstellung einer Tragschicht als Frostschutzschicht. Das Planum wird voraussichtlich ca. 0,7 m unterhalb der geplanten Geländeoberfläche liegen und soll sich generell oberhalb des mittleren höchsten Grundwasserstandes befinden. Das Planum wird jedoch voraussichtlich in Teilbereichen unterhalb des Niveaus des Bemessungsgrundwasserstandes liegen.

Im Planungsgebiet werden Rohre und Kabel für die Energieversorgung (Gas und Strom), die Tele-kommunikation und das Wärmenetz in Tiefen bis ca. 1,5 m unter Gelände (Planzustand) verlegt. Die

Leitungen werden voraussichtlich in Teilbereichen unterhalb des Bemessungsgrundwasserstandes liegen.

Dränage am Westrand

Am westlichen Planungsrand, rd. 160 m vom Nordrand entfernt, sollen zwei kleinere Mulden aufgehöht werden. Zur hydraulischen Begrenzung wird in Unterlage U7 die Herstellung einer Dränage im Bereich des westlichen Rands der Erschließungsfläche vorgeschlagen. Die Dränage soll, ausgehend vom nördlichen Randgraben, rd. 370 m nach Süden verlaufen.

Geothermie

Für die Herstellung von evtl. Flachkollektoren wird in Unterlage U7 vorgeschlagen, unversiegelte, nicht überbaute Flächen und auch an die geplante Wohnbebauung angrenzende Grün- und Gartenbereiche zu verwenden. Die Flachkollektoren sollen gem. Unterlage U7 in einer Tiefe von ca. 1,2 m bis 1,5 m unter Gelände verlegt werden.

Durch eine Verlegung der Flachkollektoren im grundwassergesättigten Bereich ist eine effizientere Nutzung der Erdwärme möglich. Hierzu ist in den Planungen optional eine Verlegetiefe von bis ca. 3 m unter Gelände vorgesehen. Aufgrund der Grundwasserflurabstände ist, in Abhängigkeit vom endgültigen Aufhöhungsbetrag, die Möglichkeit einer Verlegung von Flachkollektoren im grundwassergesättigten Bereich zumindest in Teilbereichen möglich.

Ehemalige Panzerrampe von der Ecke Am Moor – Wegverbindung S-Bahn

Der in Richtung Süd-Nord-Verbindung verlaufende Weg auf der ehemaligen Trasse der Panzerrampe soll als Fuß- und Radwegverbindung in Richtung Schule Ohrnsweg und zur S-Bahnhaltestelle Fischbek ausgebildet werden (s.a. Abbildung 1 bzw. Anlage 2).

Im Bereich der Rampenkonstruktion der S-Bahnhaltestelle Fischbek ist gem. Unterlage U8 eine Fahrradabstellanlage u. a. in doppelstöckiger Aufstellung vorgesehen. Die Fahrradabstellanlage soll u.a. als Treppenanlage ausgebildet werden.

Lärmschutzwand an der Kommunaltrasse

Am östlichen Ende der Kommunaltrasse, s. Abbildung 1, soll zum Schutz der vorhandenen Bebauung gegen Lärm gem. Unterlage U8 ggf. eine Lärmschutzwand errichtet werden. Über die Gründung und Ausbildung liegen uns zurzeit keine Unterlagen vor.

4 Geotechnischer Untersuchungsbericht

4.1 Baugrundaufschlüsse

Der Baugrundaufbau wurde von Juni bis November 2017 mit 80 Kleinrammbohrungen, 8 Handdrehbohrungen und 8 leichten Rammsondierungen (DPL-10) erkundet. Im Zuge der ergänzenden Baugrunderkundung für die Überarbeitung des Geotechnischen Berichtes in der Rev. 01 wurden von Januar bis März 2020 insgesamt 39 Kleinrammbohrungen, 8 Handdrehbohrungen und

19 leichte Rammsondierungen (DPL-10) abgeteuft. Die Aufschlüsse wurden durch unser Büro ausgeführt.

Die Kleinrammbohrungen wurden bis in eine Tiefe von 6,0 m u. Geländeoberkante (GOK) abgeteuft. Die Lage der Kleinrammbohrungen wurde vom AG vorgegeben. Aufgrund von Leitungen oder der Zugänglichkeit zum Bohrpunkt erfolgten Lageanpassungen vor Ort. Kleinrammbohrungen im geplanten bzw. vorhandenen Straßenbereich erhielten eine zweistellige Bezeichnung wie z. B. "BK06". Kleinrammbohrungen in den Freiflächen sind an einer dreistelligen Bezeichnung wie z. B. "BK116" zu erkennen. Die zur Bestimmung von Durchlässigkeitsbeiwerten in den Gewerbeflächen ausgeführten Kleinrammbohrungen erhielten die Bezeichnung "BS-G" wie z. B. "BS-G13". Die im Jahr 2020 ergänzend ausgeführten Aufschlüsse erhielten die Bezeichnung "BS" wie z.B. "BS41".

Für die Entnahme von Wasserproben wurden drei Kleinrammbohrungen (BK14, BS43 und BS44) mit temporären Rammfilterpegeln ausgebaut.

Die leichten Rammsondierungen wurden zur Bestimmung der Lagerungsdichte von rolligen Böden neben der jeweiligen Kleinrammbohrung bis in eine Tiefe von 6,0 m u. GOK ausgeführt.

Die Handdrehbohrungen wurden u. a. zur Erkundung eines organoleptisch auffälligen Bereiches in der ehemaligen Trasse der Gleisanlage bis in eine Tiefe von 1 m u. GOK niedergebracht. Weiterhin wurden sie im Bereich der Torfüberbauung im Bereich der Gewerbestraße und beim östlichen Knoten der B 73 ausgeführt (s. Anlage 2).

Die Lage der Baugrundaufschlüsse kann der Anlage 2 entnommen werden.

Die Ergebnisse der Aufschlüsse sind im Maßstab 1:100 höhengerecht in den Anlagen 3.1 bis 3.20 gemäß DIN 4023¹ aufgetragen. Die Schnittdarstellung orientiert sich an der Einteilung in Straßenbereiche, Frei- und Gewerbeflächen und der Nacherkundung.

Die ergänzenden ausgeführten Baugrundaufschlüsse für die Erstellung des vorliegenden Geotechnischen Berichtes in der Rev. 01 sind bezüglich ihrer Darstellung in folgenden Schnitten aufgetragen:

- Schnitt 3.13 Gewerbestraße bis nördlich der Bahnstrecke (Schmutzwasserdruckleitung),
- Schnitt 3.14 Vossdrift (Schmutzwassersiel),
- Schnitt 3.15 Westlicher und östlicher Knoten der B 73,
- Schnitt 3.16 und Schnitt 3.17- Ehemalige Panzerrampe von der Ecke Am Moor Wegverbindung S-Bahn,
- Schnitt 3.18 Kommunaltrasse,
- Schnitt 3.19 Lärmschutzwand an der Kommunaltrasse und
- Schnitt 3.20 Torfüberbauung im Bereich der Gewerbestraße in ca. Bau-km 0+680.

DIN 4023: Baugrund- und Wasserbohrungen, zeichnerische Darstellung der Ergebnisse

4.2 Baugrundschichtung

Der Baugrund kann unter Berücksichtigung der Ergebnisse der ausgeführten Untergrundaufschlüsse wie folgt beschrieben werden.

<u>Mutterboden</u>

Nach den Ergebnissen der Kleinrammbohrungen weist der ab der Geländeoberkante angetroffene Mutterboden eine Mächtigkeit von etwa 0,2 m bis 1,3 m auf.

Im Nordosten im Bereich der geplanten Fahrradabstellanlage (s. Anlage 3, Schnitt 3.17), der Kommunaltrasse und Lärmschutzwand (s. Anlage 3, Schnitt 3.18 und 3.19) und östlichen Knoten der B73 (s. Anlage 3, Schnitt 3.15) wurde der ehemalige Mutterboden auch überschüttet.

Die größte angetroffene Schichtdicke des Mutterbodens von 1,3 m bei der Kleinrammbohrung BK27 (Schnitt 3.6 der Anlage 3) ist gem. der Bodenansprache evtl. eine alte Grabenverfüllung.

Bei dem Mutterboden handelt es sich im Wesentlichen um Mittelsande mit unterschiedlich stark ausgeprägten Feinsand-, Grobsand-, Kies- und Schluffanteilen sowie humosen Beimengungen. Teilweise sind auch anthropogene Beimengungen wie Ziegelbruch (z.B. BK17, BS40 und BS53) eingelagert.

Torf

Ab der Geländeoberkante wurde mit den Aufschlüssen BK05, BK06, BK07, BK105, BK110, BK112, BK113, BK 124, BS57 und HDB09 bis HDB12 erwartungsgemäß im Nordosten des beplanten Gebietes (s. Unterlage U6) eine Torfschicht erkundet. Die Mächtigkeit des Torfes wurde zwischen 0,15 m bis 0,65 m bestimmt.

Im Nordosten im Bereich der ehemaligen Panzerrampe (s. Anlage 3, Schnitt 3.16) wurde der Torf nach den Kleinrammbohrungen BS58 bis BS60 auch überschüttet.

Der Torf wurde als mäßig bis stark zersetzt und teilweise vererdet angesprochen. Die Wassergehaltsbestimmungen am Torf ergaben einen mittleren Wert von rd. 118 % und für den überschütteten Torf von rd. 149 %. Die Glühverlustbestimmungen zeigten für den Torf einen mittleren Glühverlust von rd. 36 % und für den überschütteten Torf von rd. 31 %, s. Abschnitt 4.4.1.

Sand, Auffüllung

Nach den Ergebnissen der Kleinrammbohrungen stehen bereichsweise ab der Geländeoberkante, teilweise oberhalb einer Mutterbodenschicht, Auffüllungen an.

Die Auffüllungen wurden hauptsächlich im Bereich der vorhandenen sandigen Wege (z. B. BK12, BK25 und BK29), im Vossdrift (BS44 bis BS48), der Anschüttungen für die B73 (BS49 bis BS51 und BS53 bis HDB16) und im ehemaligen Gleisbereich der Panzerrampe (BS55 bis BS68) angetroffen. Die Mächtigkeit der Auffüllungen variiert zwischen 0,05 m und 2,8 m (BS64).

Kornanalytisch handelt es sich bei den Auffüllungen i. W. um kiesige, humose und schwach schluffige Sande, die teilweise Pflanzenreste und anthropogene Bestandteile (Vlies-, Gleisschotter-, Bitumen-, Bauschutt- und Ziegelreste) enthalten. Bereichsweise sind es auch Sand- und Kiesgemische (Tragschichten) mit örtlich Ziegel- oder Altschotterresten (z.B. BS45, BS48, BS58 und BS63).

Gewachsene Sande, schluffig, tw. humos

Vereinzelt treten Sande mit unterschiedlichen schluffigen und humosen Anteilen (Kleinrammbohrungen BS-G2, BS-G7, BS-G8, BS-G9, BS-G12, BK01, BK19, BK27, BK116, BS69, BS75 und BS76 bis BS78) auf.

Die Schichtmächtigkeit wurde zwischen 0,3 m (als Einlagerung bei der BK01) bis über 5,0 m, wie z.B. bei der BS-G12, ermittelt. Es handelt sich hierbei zum einen um schwach schluffige bis schluffige, stark feinsandige, schwach grobsandige z.T. schwach humose Mittelsande, die teilweise Pflanzenreste enthalten; zum anderen sind auch keine schluffigen sondern nur humose Anteile vorhanden.

Gewachsene Sande

Unterhalb des Mutterbodens / Torfs bzw. der Auffüllungen stehen gewachsene Sande an. Kornanalytisch handelt es sich dabei um Fein- und Mittelsande mit unterschiedlich stark ausgeprägten Grobsand- und Kiesanteilen.

Die Sande wurden ab einem Niveau zwischen ca. +14,0 mNHN (BS49) im Süden und +2,7 mNHN (BS63) im Norden erbohrt und weisen Schichtmächtigkeiten von ca. 3,1 m bis 9,2 m auf.

Lagerungsdichte der Gewachsenen Sande

Mit den leichten Rammsondierungen wurden unterhalb einer verfahrensbedingt nicht zu wertenden Höhe von GOK bis 0,5 m unter GOK überwiegend mitteldichte Lagerungen, z.T. auch dichte Lagerungen der gewachsenen Sande erkundet.

Eine Ausnahme bildet die leichte Rammsondierung DPL2 neben der Kleinrammbohrung BK05 (s. Anlage 3, Schnitt 3.2). Hier ist der Sand bis in eine Tiefe von ca. 1,0 m u. GOK locker gelagert. Ebenso ist der Sand bei der Kleinrammbohrung BS40, die nördlich der DB-Gleisanlage ausgeführt wurde (s. Anlage 3, Schnitt 3.13), bis in eine Tiefe von ca. 5 m u. Gelände überwiegend nur locker gelagert. Hierbei könnte es sich auch um eine Verfüllung für die Baugrube der Überlandleitungen handeln. Bei der leichten Rammsondierung DPL12, die in der Straße am Vossdrift ausgeführt wurde (s. Anlage 3, Schnitt 3.14), geht unterhalb einer Höhe von ca. 4,5 m u. Gelände die Lagerungsdichte auf eine lockere Lagerung zurück.

4.3 Grundwasser

Die Grundwasserstände wurden im Zuge der Bohrarbeiten aufgenommen. Die gemessenen Wasserstände sind an den Bohrprofilen der Anlage 3 angetragen.

Im nordwestlichen Bereich wurden Flurabstände des Grundwassers von etwa 2,0 m u. GOK gemessen. Sie vergrößern sich auf etwa 3,0 m u. GOK im mittleren Bereich der beplanten Fläche und steigen nach Süden hin entsprechend des Geländeverlaufes auf ein Maximum von rd. 5,3 m u. GOK bei der Kleinrammbohrung BS44 (Straße Vossdrift) an.

In der Nähe von Entwässerungsgräben werden die Flurabstände i.d.R. aufgrund der Sickerlinie zum Graben geringer, so z.B. bei den Kleinrammbohrungen BK20, BK21 und BK23. Hier liegen die Flurabstände bei rd. 1,3 m u. GOK, obwohl die Bohrpunkte im Süden in der Nähe der Cuxhavener Straße

liegen. Hier sind sonst die Flurabstände am größten, vgl. Abbildung 2. Ähnliches gilt für die ehemalige Gleisanlage, wobei hier die Ansatzhöhen tiefer liegen (BK122 und BK34).

Im Bereich der Torffläche im Nordosten wurden Flurabstände von nur noch 0,15 m bis 0,9 m u. GOK ermittelt. Die Kleinrammbohrungen zeigen mit zunehmender Entfernung zur Torffläche aufgrund der Sickerlinie bzw. ansteigenden GOK einen Anstieg des Flurabstandes.

Entsprechend des Bohrzeitraumes über 5 Monate für die Ersterkundung zeigt sich die Veränderlichkeit der Wasserstände in Abhängigkeit der Niederschlagsneigung, so z.B. bei den nachgezogenen Erkundungen für die Gewerbeflächen im Oktober 2017. Hier sind witterungsbedingte Differenzen des ermittelten Grundwasserstandes zwischen benachbarten Kleinrammbohrungen von 30 cm bis 60 cm erkennbar.

Bez. der anzusetzenden Bemessungswasserstände wird auf den Abschnitt 5.2 verwiesen.

4.4 Bodenmechanische Laborversuche

4.4.1 Wassergehaltsbestimmungen

Zur vergleichenden Bewertung und zur Bestimmung der Bodenkennwerte wurden Wassergehalte gemäß DIN 18121-1² sowie DIN EN ISO 17892-1³ an ausgewählten Proben des Torfes und des Mutterbodens insbesondere im Bereich der Panzerrampe bestimmt. Eine Übersicht über die Ergebnisse ist in Tabelle 1 dargestellt.

Tabelle 1: Übersicht über die Wassergehalte ausgewählter Proben

Bodenart		Wassergehalte w [%	6]
	Minimum	Mittelwert	Maximum
Torf w: 5 Versuche	59,0	117,7	193,8
Überschütteter Torf w: 3 Versuche	54,5	149,0	206,6
Überschütteter Mutterboden w: 2 Versuche	30,8	52,0	73,1

Die Einzelergebnisse der Wassergehaltsbestimmungen können den Bohrprofilen der Anlage 3 entnommen werden.

Az.: HH 261.0/17

-

² DIN 18121-1: Baugrund, Untersuchung von Bodenproben - Wassergehalt - Teil 1: Bestimmung durch Ofentrocknung

DIN EN ISO 17892-1: Geotechnische Erkundung und Untersuchung - Laborversuche an Bodenproben - Teil 1: Bestimmung des Wassergehaltes

4.4.2 Glühverlustbestimmungen

Zur vergleichenden Bewertung und zur Bestimmung der Bodenkennwerte wurden Glühverlustbestimmungen gemäß DIN 18128⁴ an ausgewählten Proben des Mutterbodens, des Torfes und einer sandigen Auffüllung bestimmt. Eine Übersicht über die Ergebnisse ist in Tabelle 2 dargestellt.

Tabelle 2: Übersicht über die Glühverluste ausgewählter Proben

Bodenart		Glühverlust Vgl [%]]
	Minimum	Mittelwert	Maximum
Torf Vgl: 5 Versuche	17,5	35,6	44,1
Überschütteter Torf Vgl: 2 Versuche	11,9	30,9	49,8
Mutterboden Vgl: 3 Versuche	7,9	15,3	29,0
Überschütteter Mutterboden Vgl: 3 Versuche	5,1	12,0	25,1
Gewachsener Sand Vgl: 1 Versuch	-	1,0	-

Die Einzelergebnisse der Glühverlustbestimmungen können den Bohrprofilen der Anlage 3 entnommen werden.

4.4.3 Kornverteilungen

Zur Ergänzung der im Labor durchgeführten Bodenprobenansprache wurden an kennzeichnenden Bodenproben Kornverteilungsanalysen nach DIN 18123⁵ sowie nach DIN 17892-4⁶ durchgeführt.

Die Ergebnisse der durchgeführten Kornverteilungsanalysen sind in Form von Kornverteilungskurven in der Anlage 4.1 dokumentiert.

Die Nasssiebungen und eine kombinierte Analyse ergaben folgende Ergebnisse:

 <u>Auffüllungen:</u> Kornanalytisch handelt es sich um Sande mit unterschiedlichen Anteilen an Kiesen bzw. Ziegelresten und bereichsweise auch schwach schluffigen Anteilen, die gemäß DIN 18196⁷ den Bodengruppen SE, SI, SU und GU zuzuordnen sind.

⁴ DIN 18128: Baugrund, Untersuchung von Bodenproben - Bestimmung des Glühverlustes

⁵ DIN 18123: Baugrund, Untersuchung von Bodenproben - Bestimmung der Korngrößenverteilung

⁶ DIN EN ISO 17892-4: Geotechnische Erkundung und Untersuchung - Laborversuche an Bodenproben - Teil 4: Bestimmung der Korngrößenverteilung

⁷ DIN 18196: Erd- und Grundbau, Bodenklassifikation für bautechnische Zwecke

- <u>Mutterboden:</u> Kornanalytisch handelt es sich um stark feinsandige, schwach grobsandige, z.T. schwach schluffige bis schluffige bzw. schwach tonige Mittelsande, die gemäß DIN 18196 den Bodengruppen SU, SU* und ST zuzuordnen sind.
- <u>Gewachsener Sand, schluffig:</u> Kornanalytisch handelt es sich um schwach schluffige, stark feinsandige, schwach grobsandige, schwach kiesige Mittelsande bzw. schwach schluffige, schwach grobsandige Feinsand-Mittelsand-Gemische, die gemäß der DIN 18196 der Bodengruppe SU zuzuordnen sind.
- <u>Gewachsener Sand:</u> Kornanalytisch handelt es sich um feinsandige bis stark feinsandige, schwach grobsandige Mittelsande bzw. Feinsand-Mittelsand-Gemische, die gemäß der DIN 18196 der Bodengruppe SE zuzuordnen sind.

Eine Zusammenstellung der aus den Kornverteilungen abgeleiteten Durchlässigkeitsbeiwerte nach Beyer enthält Anlage 4.2.

4.5 Chemische Analysen des Bodens (orientierende Untersuchung)

Bez. der chemischen Analytik wird darauf hingewiesen, dass die Untersuchungen aufgrund der Aufgabenstellung und der Größe des Planungsgebietes hinsichtlich des Analysenumfanges einen orientierenden Umfang aufweisen.

4.5.1 Allgemeines

Der im Zuge der Baumaßnahme auszuhebende Boden ist hinsichtlich seiner Weiterverwendung bzw. Verbringung und Entsorgung i. W. auf Grundlage der LAGA-Einstufung bzw. Zuordnung ("Z-Werte") zu beurteilen.

Die Z-Werte gemäß LAGA⁸ der Aushubböden führen zu folgenden Konsequenzen hinsichtlich des weitergehenden Einbaus dieser Böden:

Einbauklasse Z 0: uneingeschränkter Einbau

Einbauklasse Z 1.1: eingeschränkter offener Einbau

Einbauklasse Z 1.2: eingeschränkter offener Einbau in hydrogeologisch günstigen Gebieten

Einbauklasse Z 2: eingeschränkter Einbau mit definierten technischen Sicherungsmaßnah-

men

Einbauklasse > Z 2: Einbau in Deponien/Dekontamination des Bodens.

Mitteilung der Länderarbeitsgemeinschaft Abfall (LAGA), Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen – Technische Regeln Boden – Stand: 31.08.2004

4.5.2 Untersuchungsergebnisse und Handlungsempfehlungen

Zur weiteren Untersuchung, ob mit erhöhten chemischen Belastungen der oberflächennahen Böden bzw. des zu rechnen ist, wurden insgesamt 22 chemischen Untersuchungen auf den Komplettumfang nach LAGA (Feststoff und Eluat) durchgeführt.

Die Untersuchungsergebnisse sind in Anlage 5.1 dargestellt und in der Tabelle 3 zusammengefasst. Eine Probenliste der zusammengestellten Mischproben ist als Anlage 5.2 beigefügt.

Allgemeine Abfallbeprobung (Charakterisierung von Grundgesamtheiten)

Entsprechend der Aufgabenstellung bzw. Vorgaben des Bauherrn wurden die Mischproben MP1 und MP2 aus dem auszuhebenden Horizont der Ost-West verlaufenden unbefestigten Wege und die Probe MP3 aus den gewachsenen Sanden hergestellt.

Die Mischprobe MP6 wurden zur abfalltechnischen Einstufung des Torfes aus den 2 Torfhorizonten der beiden Kleinrammbohrungen BK05 und BK105 zusammengeführt.

Sonder-Beprobung

Die Mischprobe der MP5 wurde aus den organoleptisch auffälligen Proben der Kleinrammbohrung BK122 aus dem ehemaligen Gleisbereich und den auffälligen Proben der zur Eingrenzung durchgeführten Handdrehbohrungen zusammengestellt. Die äußeren Handdrehbohrungen HDB08 und HDB07, s. Anlage 2 (Lageplan der Untergrundaufschlüsse; Detail A, Lage der Handdrehbohrungen) zeigen keine organoleptischen Auffälligkeiten mehr und wurden deshalb nicht in die Beprobung eingeschlossen.

Ergänzende Baugrunderkundung

Weitere Beprobungen erfolgten für die folgenden Bereiche der ergänzenden Baugrunduntersuchung, s. Abschnitt 3. Hierbei wurden jeweils zwei Mischproben aus den Aushubböden der Auffüllungen bzw. Mutterböden und hauptsächlich unterlagernden gewachsenen Böden zusammengestellt:

- Gewerbestraße bis nördlich der Bahnstrecke (Schmutzwasserdruckleitung),
- Vossdrift (Schmutzwassersiel),
- Westlicher und östlicher Knoten der B 73,
- Ehemalige Panzerrampe von der Ecke Am Moor Wegverbindung S-Bahn,
- Kommunaltrasse,
- Lärmschutzwand an der Kommunaltrasse und
- Torfüberbauung im Bereich der Gewerbestraße in ca. Bau-km 0+680.

Tabelle 3: Übersicht über die Ergebnisse der LAGA-Analytik

Probenbe- zeichnung	Tiefe bis	Probenzusam- mensetzung	Bodenart	Zuordnung gem. LAGA	maßgebende Parameter
Nördlicher St	raßenbereich			LAGA	
MP1	1,0 m unter GOK	gewachsene Böden	Mutterboden, gew. Sande	Z2	TOC, pH-Wert
Südlicher Stra	ßenbereich				
MP2	1,0 m unter GOK	gewachsene Böden	Mutterboden, gew. Sande	Z1.2	pH-Wert
Gewachsene	Sande				
MP3	2,0 m unter GOK	gewachsene Böden	gewachsene Sande	Z1.2	pH-Wert
Sonder-Bepro	bung				
MP5	0,6 m unter GOK	Auffüllung	sandige Auffül- lung, Beimeng.	Z1	TOC
Torfbereich					
MP6	0,8 m unter GOK	gewachsene Böden	Torf	>Z2	TOC
Gewerbestra	3e bis nördlich o	der Bahnstrecke (S	chmutzwasserdru	ckleitung)	
MP7	1,0 m unter GOK	Auffüllung, gew. Böden	Mutterboden, gew. Sande	Z2	TOC
MP8	9,0 m unter GOK	gewachsene Böden	gewachsene Sande	Z0	-
Vossdrift (Sch	nmutzwassersiel				
MP9	0,7 m unter GOK	Auffüllung	Sande, Kiese	Z2	TOC
MP10	3,0 m unter GOK	gewachsene Böden	gewachsene Sande	Z0	-
Westlicher Kr	noten der B 73				
MP11	1,2 m unter GOK	Auffüllung	Sande, Kiese	Z1	TOC, Kohlen- wasserstoffe
MP12	1,1 m unter GOK	gewachsene Böden	gewachsene Sande	Z0	-
Östlicher Kno	ten der B 73				
MP13	1,5 m unter GOK	gew. Böden/ Auffüllung,	Mutterboden, Sande	Z2	TOC
MP14	3,3 m unter GOK	Auffüllung	Sande, Kiese	ZO	-
Ehemalige Pa	nzerrampe (Auf	schlüsse Schnitt 3	.16, s. Anlage 3)		
MP15	0,4 m unter GOK	Auffüllung	Sande, Kiese	Z1(Z0)	TOC
MP16	1,9 m unter GOK	Auffüllung	Sande, Kiese	Z0	-
Ehemalige Pa	nzerrampe (Auf	schlüsse Schnitt 3	.17, s. Anlage 3)		
MP17	0,4 m unter GOK	Auffüllung	Sande, Kiese	Z0	-

	1 2	nov. Dädon/	N.A. ittaulaa alaa		TOC DAK	
MP18	1,3 m unter	gew. Böden/	Mutterboden,	Z2	TOC, PAK,	
	GOK	Auffüllung	Sande, Kiese		Benzo(a)pyren	
Kommunaltr	asse (Straßenber	eich)				
MP19	1,1 m unter	gew. Böden/	Mutterboden,	>72	TOC	
IVIPT9	GOK	Auffüllung	Sande	>22	TOC	
MP20	2,0 m unter	gewachsene	gewachsene	ZO		
	GOK	Böden	Sande	20	-	
Lärmschutzw	Lärmschutzwand an der Kommunaltrasse					
MP21	1,1 m unter	gew. Böden/	Mutterboden,	72	TOC	
IVIPZI	GOK	Auffüllung	Sande, Kiese	22	100	
MDDD	2,0 m unter	gewachsene	gewachsene	Z 0		
MP22	GOK	Böden	Sande	20		

Die chemische Analytik des Aushubbodens der MP1 bis MP3 ergab aufgrund des TOC-Gehaltes und des pH-Wertes Zuordnungswerte von Z2 bzw. Z1.2. Die Sonderbeprobung MP5 ergab aufgrund des TOC-Gehaltes einen Zuordnungswert von Z1.

Mit der durchgeführten Analyse der MP6 wurde für den Torf eine Zuordnungsklasse >Z2 festgestellt, wobei als maßgebender Parameter der TOC-Gehalt hervorzuheben ist.

Für die chemischen Analysenergebnisse der ergänzenden Baugrunderkundung ist festzustellen, dass häufig die aufgefüllten Böden oder der Mutterboden aufgrund des TOC-Gehaltes in die LAGA-Zuordnungsklasse Z2 einzustufen sind. Die darunter anstehenden gewachsenen Sande sind nicht belastet und dem LAGA-Zuordnungswert Z0 zuzuordnen.

4.5.3 Atmungsaktivität (AT₄)

Zur rechtskonformen Ablagerung von organischem Bodenmaterial gemäß der DepV⁹ (DepV Anh.4, Nr. 3.3.1) müssen die mit den aeroben und anaeroben Abbauprozessen verbundenen Emissionen gering gehalten werden.

Der Parameter AT₄ dient zur Charakterisierung des Anteils der organischen Substanz der mikrobiologisch abbaubar ist und zur Deponiegasbildung sowie zu einer Schadstofffracht im Sickerwasserpfad führen kann.

An zwei Torfproben der Kleinrammbohrungen BK05, BK105 sowie einer Mischprobe (NF67/2000) aus den Handdrehbohrungen HDB09 bis HDB13 aus dem Aufhöhungsbereich westlich der Panzerrampe wurden zur Beurteilung der Atmungsaktivität drei Versuche durchgeführt.

Die Untersuchungsergebnisse sind in der Anlage 5.3 dokumentiert und in der nachfolgenden Tabelle zusammengefasst:

⁹ DepV: 04-2009; Verordnung zur Vereinfachung des Deponierechts (Artikel 1 Verordnung über Deponien und Langzeitlager (Deponieverordnung)

Tabelle 4: Übersicht über	die Ergebnisse der AT ₄ -Versuche
---------------------------	--

Probenbezeich- nung	Tiefe	Trockenrückstand in Masse-%	Atmungsaktivität in mg O₂/g TM
BK05, EP1	0,00 - 0,45 m u. GOK	54,5	4,5
BK105, EP1	0,00 - 0,80 m u. GOK	18,0	0,6
NF67/2000	0,00 - 0,50 m u. GOK	38,9	<1,0

Ergebnis: Alle drei Proben unterschreiten den Grenzwert von 5 mg O₂/g TM gem. DepV, Anhang 3, Pkt. 2.

4.5.4 Asphalt

An vier Asphaltproben wurden zur Beurteilung der Pechhaltigkeit PAK-Bestimmungen (Polyzyklische Aromatische Kohlenwasserstoffe) mit dem Untersuchungsumfang gem. EPA (amerikanische Bundesumweltbehörde USEPA) durchgeführt. Die mit diesem Umfang analysierten 16 Einzelverbindungen können erfahrungsgemäß in guter Näherung stellvertretend für die weitaus größere Anzahl vorkommender Einzelsubstanzen zur Beurteilung herangezogen werden.

Die Asphaltprobe AP1b wurde aus der Asphaltdecke der PKW-Stellfläche auf dem ehemaligen Bundeswehrgelände entnommen. Die Asphaltprobe AP2b wurde an der Wegkreuzung nördlich des ehemaligen Bundeswehrgeländes entnommen. Die Asphaltproben AP3 und AP4 wurden südwestlich des Untersuchungsgebietes am westlichen Knoten der B73 entnommen, s. Anlage 2.

Die Untersuchungsergebnisse sind in der Anlage 5.4 dokumentiert und in der nachfolgenden Tabelle zusammengefasst:

Tabelle 5: Übersicht über die Ergebnisse der PAK-Analytik

Probenbezeichnung	Tiefe	PAK Gehalt in mg/kg	Bezeichnung (RuVA-StB 01¹º)
AP1b	0,0 - 0,1 m u. GOK	4,5	Ausbauasphalt
AP2b	0,0 - 0,1 m u. GOK	0,6	Ausbauasphalt
AP3 (BS49, UWP1)	0,0 – 0,04 m u. GOK	1,11	Ausbauasphalt
AP4 (BS50, UWP1)	0,0 – 0,05 m u. GOK	0,40	Ausbauasphalt

Richtlinie für die umweltverträgliche Verwertung von Ausbaustoffen mit teer- / pechtypischen Bestandteilen sowie für die Verwertung von Ausbauasphalt im Straßenbau (RuVA-StB 01)

Die Asphaltproben sind gemäß RuVA-StB 01 als <u>nicht pechhaltig und nicht belastet</u> einzustufen, da die PAK-Konzentration < 15 mg/kg beträgt.

4.5.5 Analyse gem. BBodSchV (Wirkungspfad Boden-Mensch)

Für eine erste Einschätzung der chemischen Eigenschaften des humosen Oberbodens / Mutterbodens wurde die Mischprobe MP4 im Umweltlabor GBA, Pinneberg, gem. BBodschV¹¹ untersucht.

Das Analysenergebnis ist in Anlage 5.5 beigefügt.

4.6 Chemische Analytik des Wassers (orientierende Untersuchung)

Bez. der chemischen Analytik wird darauf hingewiesen, dass die Untersuchungen aufgrund der Aufgabenstellung und der Größe des Planungsgebietes bez. des Analysenumfanges einen orientierenden Umfang aufweisen.

4.6.1 Beton- und Stahlaggressivität

Aus den Kleinrammbohrungen BK14, BS43 (Schmutzwasserpumpwerk) und BS44 (Sielleitungen in der Straße Vossdrift) wurden aus einem jeweils temporär errichteten Pegel eine Wasserprobe entnommen und durch das Labor GBA, Pinneberg, auf beton- und stahlangreifende Inhaltsstoffe gem. DIN 4030¹² bzw. DIN 50929¹³ untersucht. Die detaillierten Ergebnisse der Analysen sind der Anlage 5.6 zu entnehmen und in der folgenden Tabelle zusammengefasst:

Tabelle 6: Übersicht über die Analysenergebnisse auf Beton- und Stahlaggressivität

	Betonaggressivi- Stahlaggressivität gem. DIN 50929			
Probenbezeichnung	tät gem.	Mulden- und Lochkorro-	Flächenkorrosions-wahr-	
	DIN 4030	sionswahrscheinlichkeit	scheinlichkeit	
GW BK14	mäßig	goring	sehr gering	
GW BK14	betonangreifend ¹⁾	gering		
GW BS43	nicht	mittel	goring	
(GBA-Bez.: BK43)	betonangreifend ²⁾	mittei	gering	
GW BS44	nicht	goring	sobr goring	
(GBA-Bez.: BK44)	betonangreifend ²⁾	gering	sehr gering	

¹⁾ Expositionsklasse XA2

²⁾ Expositionsklasse XA1

Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999 (BGBl. I S. 1554), die zuletzt durch Artikel 5, Absatz 31 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist

¹² DIN 4030-1: Beurteilung betonangreifender Wässer, Böden, und Gase – Teil 1: Grundlagen und Grenzwerte

DIN 50929-3: Korrosion der Metalle; Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung; Rohrleitungen und Bauteile in Böden und Wässern

4.6.2 Einleitparameter bei einer Wasserhaltung (orientierende Untersuchung)

Weiterhin wurde aus den Kleinrammbohrungen BK14, BS43 (Schmutzwasserpumpwerk) und BS44 (Sielleitungen in der Straße Vossdrift) aus einem jeweils temporär errichteten Pegel eine Wasserprobe entnommen und durch das Labor GBA, Pinneberg, auf den seitens der Behörde für Umwelt und Energie (BUE) geforderten Parameterumfang im Hinblick auf eine Einleitung von Förderwasser in Kanäle bzw. Oberflächengewässer untersucht. Die detaillierten Ergebnisse der Analysen sind der Anlage 5.6 zu entnehmen.

Hinsichtlich einer Ableitung von Baugrubenwasser ist zu berücksichtigen, dass von den Hamburger Aufsichtsbehörden keine verbindlichen Grenzwerte für die Einleitung in Oberflächengewässer und das öffentliche Siel festgelegt sind. Diese werden von Fall zu Fall, abhängig von den Einleitwerten, dem Ort der Einleitung und der Jahreszeit festgelegt.

Unter Berücksichtigung der Erfahrung bei anderen Bauvorhaben liegen bez. der analysierten Werte der BK14 für die Einleitung in Oberflächengewässer leicht erhöhte Gehalte bez. des Kohlendioxids, des Eisen-II, des CSB und der Schwermetalle Blei, Nickel, Zink und Kupfer vor. Für die Einleitung ins öffentliche Siel wurden leicht erhöhte Gehalte bez. des Kohlendioxids festgestellt.

Bei der BS43 (Schmutzwasserpumpwerk) wurden nach den Analysenergebnissen leicht erhöhte Gehalte an Nickel und Zink festgestellt. Die Analysenergebnisse der BS44 (Sielleitungen in der Straße Vossdrift) sind relativ unauffällig.

Die bauzeitliche Grundwasserabsenkung und die Ableitung von Baugrubenwasser in die öffentliche Vorflut ist genehmigungspflichtig und entsprechend bei der BUE zu beantragen.

5 Auswertung und Bewertung der geotechnischen Untersuchungsergebnisse

5.1 Charakteristische Bodenkenngrößen für geotechnische Berechnungen

Auf Grundlage der Baugrunderkundung sowie unserer Erfahrungen mit vergleichbaren Böden werden die in der nachfolgenden Tabelle zusammengestellten charakteristischen Bodenkenngrößen angegeben.

Tabelle	7 : Chara	kteristische	Boden	kenngrößen

		Wichte	Scherpara- meter ¹⁾	Undränierte Kohäsion	Steifemodul
	Bodenschicht	γ_k/γ'_k	ϕ'_k / c'_k	C _{u,k}	$E_{s,k}$
		[kN/m³]	[°] / [kN/m²]	[kN/m²]	[MN/m²]
S1:	Mutterboden	16/8	22,5 / 2,5	k.A.	k.A.
S2:	Torf	11 / 1	20 / 5	≥10	≥0,3
S3:	Sand, Auffüllung	18 / 10	30 / 0	0	≥10
S4:	Sand, schluffig, humos	18 / 10	30 / 0	0	≥20
S5:	Sand	19 / 11	35 / 0	0	≥40

Der Erddruckneigungswinkel ist im Mutterboden und im Torf zu $\delta_k = 0$ zu setzen. In den übrigen Böden kann ein Erddruckneigungswinkel von $\delta_k \le 2/3 \ \phi_k$ angesetzt werden.

5.2 Charakteristische Grund- und Schichtwasserstände

Für das Plangebiet liegen bez. der maßgebenden Grund- und Schichtwasserstände die Untersuchungen des Ingenieurbüros BWS GmbH, Hamburg, mit den Unterlagen U6 und U7 vor.

Bez. des Wasserstandes wird zur Erläuterung aus der Unterlage U6 wie folgt zitiert:

Im Großteil der Fläche treten Sande des 1. Hauptgrundwasserleiters an die Geländeoberfläche. Nur im nordwestlichen Bereich ist eine relevante Überdeckung mit geringdurchlässigen Torfen gegeben. Der aus Sanden und Kiesen aufgebaute Grundwasserleiter reicht bis in ein Tiefenniveau von ca. -50 mNHN (Bohrung C141 an der Cuxhavener Straße).

Das Grundwasser strömt im Bereich der Erschließungsfläche von Süden, aus dem Bereich der Geest, nach Norden. Dort sickert es im Bereich der großflächigen Wasserhaltung der Marsch in Grüppen und Gräben oberflächig aus und wird über die Grabensysteme sowie Siel- und Schöpfwerke in die Elbe geleitet.

Die Grenze zum Bereich der Grundwasseraussickerung verläuft im Nordosten der Erschließungsfläche. Hier liegen die Geländehöhe und der mittlere Grundwasserstand bei Werten um 4,0 mNHN. Der Vernässungsbereich deckt sich mit dem heutigen Verbreitungsbereich von Torfböden.

In Abhängigkeit von der Entwicklung des Grundwasserstands kann sich die Grenze der Grundwasseraussickerung verschieben. Bei niedrigen Grundwasserständen ist im Bereich der Erschließungsfläche keine Aussickerung zu erwarten.

Die Entwicklung des Grundwasserstands im 1. Hauptgrundwasserleiter wird durch die Witterung beeinflusst. In niederschlagsreichen Phasen mit geringer Verdunstung nimmt, infolge der dann hohen Grundwasserneubildungsrate, die aus dem Geestbereich anströmende Grundwassermenge zu und die Grundwasserstände steigen.

Darüber hinaus wird der Grundwasserstand im Bereich der Erschließungsfläche durch die Grundwasserentnahme des Wasserwerks Süderelbmarsch beeinflusst. Die nächstgelegene Brunnengruppe liegt rd. 1.600 m nordöstlich der Erschließungsfläche und umfasst sowohl Flach- als auch Tiefbrunnen".

In der Unterlage U6 ist in Anlage 6 der Bemessungsgrundwasserstand mit Angabe des Grundwasserflurabstandes und mittleren höchsten GW-Stand angegeben. Hierbei wurde auch das nordöstlich gelegene Wasserwerk Süderelbmarsch, s.o., berücksichtigt.

Mit den bei der Durchführung der Kleinrammbohrungen gemessenen Wasserständen wurden die in der o.g. Unterlage U6, Anlage 6, genannten Wasserstände bestätigt. Der Ansatz der in der Unterlage U6, Anlage 6, genannten Wasserstände erscheinen uns plausibel und gerechtfertigt.

Von daher empfehlen wir, von den in der Unterlage U6, Anlage 6, genannten Bemessungsgrundwasserständen weiterhin auszugehen.

Für den Bemessungsgrundwasserstand sind die Ausführungen in Unterlage U7 bez. des Aufhöhungskörpers und einer evtl. Basisdränage zu berücksichtigen.

Zu erwähnen ist noch, dass die Wasserstände, die im Oktober / November in den Gewerbegebieten mit den nachträglich durchgeführt Kleinrammbohrungen ermittelt wurden, ca. 0,5 m oberhalb der im August gemessenen Wasserstände liegen. Hier zeigen sich die jahreszeitlichen Schwankungen aber auch der recht regenreiche Herbst in diesem Jahr, so dass tlw. nur noch geringe Abstände zum mittleren höchsten GW-Stand vorhanden sind, so z. B. BS-G5 und BS-G6, s. Schnitt 3.11. Hier liegen die Wasserstände 0,2 m bzw. 0,4 m unterhalb des mittleren höchsten GW-Standes. Bei dem benachbarten Aufschluss BS-G4 wird er örtlich sogar um rd. 0,2 m überschritten.

Schmutzwasserpumpwerk:

Auf Grundlage der in Unterlage U6, Anlage 6, genannten Bemessungsgrundwasserstände werden die folgenden für die Bemessung anzusetzenden höchsten und niedrigsten charakteristischen Grundwasserstände (Bemessungswasserstände) für das Schmutzwasserpumpwerk angegeben.

Höchster charakteristischer Grundwasserstand: +5,0 mNHN

Niedrigster charakteristischer Grundwasserstand: +2,0 mNHN

Für die Bauzeit des Schmutzwasserpumpwerks empfehlen wir von einem bauzeitlichen Bemessungswasserstand von zunächst +4,0 mNHN auszugehen. Da der Wasserstand jahreszeitlichen Schwankungen unterliegt, ist der bauzeitliche Wasserstand rechtzeitig vor Baubeginn durch Wasserstandsmessungen in einem Rammfilterpegel zu verifizieren.

5.3 Bodenklassifizierung und Homogenbereiche

Zur Beschreibung der leistungs- und verfahrenstechnischen Eigenschaften hinsichtlich der Bearbeitbarkeit des Baugrunds erfolgt in der Tabelle 9 eine Zuordnung der Schichten gem. Abschnitt 5.1 in Homogenbereiche mit für das jeweilige Bauverfahren vergleichbaren Eigenschaften. Die für die einzelnen Schichten kennzeichnenden Parameter können der Anlage 6 zu diesem Bericht entnommen werden.

Tabelle 8: Zuordnung der Schichten in H	Iomogenbereiche mit Be	ezug auf die VOB, Teil C
---	------------------------	--------------------------

				Ш	IV	V
		I	II	DIN 18304	DIN 18319	DIN 18324
	Bodenschicht	DIN 18300	DIN 18301	Ramm-, Rüttel-	Rohrvortriebs-	· Horizontalspül-
		Erdarbeiten	Bohrarbeiten	und Pressar- beiten	arbeiten	bohrarbeiten
S1:	Mutterboden	ΙA	II A	III A	-	-
S2:	Torf	ΙB	II B	III B	-	-
S3:	Sand, Auffüllung					
S4:	Sand, schluffig, humos	IC	II C	III C	IV A ¹⁾	V A ¹⁾
S5:	Sand	•				

¹⁾ Schichten werden vom Rohrvortrieb bzw. Horizontalspülbohrarbeiten gemeinsam bzw. nacheinander durchfahren und bilden daher einen Homogenbereich

6 Folgerungen, Empfehlungen und Hinweise

6.1 Geotechnische Kategorie

Die Geotechnische Kategorie (GK) nach DIN 1054¹⁴ ist ein Maß für den Schwierigkeitsgrad des Bauwerks, der Baugrundverhältnisse und der Wechselwirkungen zwischen diesen und der Umgebung.

Für die Einstufung in eine Geotechnische Kategorie ist das Kriterium, welches den höchsten Schwierigkeitsgrad ergibt, maßgebend.

Die Baumaßnahme und der Baugrundaufbau (s. Abschnitt 4) sind in die Geotechnische Kategorie 2 einzustufen.

6.2 Schlussfolgerungen für den Straßenaufbau

6.2.1 Allgemeines

Bei der Herstellung eines ausreichend tragfähigen Erdplanums für die Straßenflächen sind die Eigenschaften des oberflächennah anstehenden Baugrundes zu berücksichtigen.

Gem. ZTVE-StB 17¹⁵ ist auf dem Erdplanum, entsprechend UK Frostschutzschicht, ein Verformungsmodul von $E_{V2} = 45 \text{ MN/m}^2$ nachzuweisen.

DIN 1054:2010-12: Baugrund – Sicherheitsnachweise im Erd- und Grundbau – Ergänzende Regelungen zu

¹⁵ ZTVE-StB17: Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau, Ausgabe 2017

Für die vorliegenden Verhältnisse wird auf Grundlage der Angaben zur Ermittlung der Dicke des frostsicheren Oberbaus gem. ZTVE Stb-17 von einer erforderlichen Dicke des frostsicheren Oberbaus von ca. 60 cm bis 70 cm ausgegangen.

6.2.2 Bereiche ohne Aufhöhung

Für den Großteil der Straßenflächen wird davon ausgegangen, dass keine Aufhöhungen erforderlich sind, s. Abschnitt 3, Abbildung 3, und der Mutterboden bzw. die geringmächtigen Auffüllungen abgeschoben werden.

Unter der Annahme, dass das geplante Niveau der Erschließungsstraßen etwa dem derzeitigen Geländeniveau entsprechen wird, stehen nach den durchgeführten Untergrundaufschlüssen auf dem Niveau des Planums (= UK Frostschutzschicht) vielfach gewachsene tragfähige Sande untergeordnet auch Sande mit wechselnden Schluffanteilen und humosen Einlagerungen an.

Es kann auf Grundlage von Erfahrungen sowie den im Handbuch ZTVE-Stb¹⁶ angegebenen Korrelationen davon ausgegangen werden, dass die auf dem Niveau des Planums anstehenden gewachsenen tragfähigen Sande eine ausreichende Verdichtungs- und Trageigenschaft besitzen, um den erforderlichen Verformungsmodul von $E_{V2} = 45 \text{ MN/m}^2$ nachweisen zu können.

Dies trifft nach den Ergebnissen der vorgenommenen geotechnischen Untersuchungen auf den überwiegenden Untersuchungsbereich ohne geplante Aufhöhungen zu.

Sande mit wechselnden Schluffanteilen und humosen Einlagerungen, die ggf. eine Verbesserung der Trageigenschaften des Planums erforderlich machen, stehen bei den Aufschlüssen BK01, BK04, BK05, BK 27, BK19 und BK32 an. Eine Verbesserung der Trageigenschaften des Planums kann durch einen entsprechend zu verdichtenden Bodenaustausch zwischen Erdplanum und OK der anstehenden Böden erfolgen.

Als Austauschmächtigkeit kann für diesen Fall auf Grundlage von Erfahrungen eine Dicke von 0,3 m bis 0,5 m empfohlen werden. Als Austauschmaterial ist ein entsprechend zu verdichtender (D_{Pr} mind. 100 %) frostsicherer ton- und schluffarmer Sand (Feinkornanteil \leq 3 Gew. % / Ungleichförmigkeitsgrad $C_u \geq$ 3) zu empfehlen.

Weiterhin kann die Dicke des Bodenaustauschs durch eine Bodenverfestigung der unterlagernden Sande mit wechselnden Schluffanteilen und humosen Einlagerungen oder durch eine eingelegte zugfeste geotextile Bewehrung reduziert werden.

Die tatsächliche Schichtdicke und Materialwahl muss zu Beginn der Baumaßnahme mit Probefeldern ermittelt werden, mit denen die folgenden Parameter geprüft und festgestellt werden:

- Erforderlicher Geräteeinsatz und Lagenstärke zum Erreichen des erforderlichen Verdichtungsgrades,
- Korrelationsfaktoren zwischen statischen und dynamischen Verformungsmoduln für die verwendeten Böden.

Handbuch ZTVE-StB: Kommentar und Leitlinien mit Kompendium Erd- und Felsbau, Verlag Kirschbaum

Hinsichtlich der praktischen Umsetzung der Maßnahmen zur Planumsverbesserung ist zu empfehlen, nach erfolgtem Bodenaushub auf das Niveau des Soll-Planums durch unser Büro eine Bereichsabgrenzung vornehmen zu lassen, um die ggf. örtlich erforderlichen Bodenaustauschmaßnahmen festlegen zu können.

Bei einer ordnungsgemäßen Verdichtung des Erdplanums der tragfähigen Sande ist davon auszugehen, dass die Setzungen der Straßenkörpers bautechnisch nicht relevant sein werden ($s \le 1$ cm).

6.2.3 Bereiche mit Aufhöhung / Torfüberbauung (Arbeitspapier Torfüberbauung von IPROconsult GmbH)

Im Aufhöhungsgebiet im Nordosten des Planungsgebietes wurden Dicken des Mutterbodens bzw. des Torfes zwischen 0,3 m bis 0,65 m angetroffen. Gem. Unterlage U6 sind im Randbereich des Torfvorkommens auch Torfböden mit Mächtigkeiten zwischen 0,15 m und 0,3 m vorhanden.

Gem. der Unterlage U8 ist davon auszugehen, dass die <u>Torfe</u> im Untergrund <u>verbleiben</u> und entgegen der Empfehlungen unserer Erstausfertigung dieses Berichtes (Rev.0) <u>nicht abgeschoben</u> werden.

Im Bereich der größten Aufhöhung von bis zu 3,3 m westlich der Panzerrampe, s. Unterlage U8 (Arbeitspapier Torfüberbauung von IPROconsult GmbH), wurden von uns ergänzende Untergrundaufschlüsse ausgeführt, s. Anlage 2 (Lageplan der Untergrundaufschlüsse). Die Untergrundaufschlüsse sind in der Anlage 3.20 (Torfüberbauung im Bereich der Gewerbestraße in ca. Bau-km 0+520 bis Bau-km 0+500) aufgetragen. Bei dieser Erkundung wurden Torfdicken zwischen 0,4 m und 0,5 m festgestellt.

Aus der Anhebung der Straßentrasse sind Setzungen zu erwarten, die durch die verbleibenden Torfschichten hervorgerufen werden. Für die Torfschichten ist die Aufschüttung als Erstbelastung anzunehmen. Überschlägige Setzungsberechnungen ergeben für eine <u>Aufhöhung der Straße</u> um rd. 3,3 m, einer <u>Torfdicke von d = 0,5 m</u> und der Ansatz der <u>halben Verkehrslast</u> eine Bandbreite der Setzungen von rd.

$$8 \text{ cm} \leq s \leq 13 \text{ cm}$$
.

Für eine <u>Aufhöhung der Straße</u> um rd. <u>1,7 m</u> (Straßenaufbau von rd. 0,7 m und Dammaufbau von rd. 1,0 m), einer <u>Torfdicke von d = 0,5 m</u> und der Ansatz der <u>halben Verkehrslast</u> errechnet sich eine Bandbreite der Setzungen von rd.

$$5 \text{ cm} \leq s \leq 8 \text{ cm}$$
.

Unter Berücksichtigung des Konsolidationsverhaltens des Torfes ist nach unserer Abschätzung davon auszugehen, dass sich ca. 95% der o.a. Setzungsbeträge innerhalb eines Zeitraumes von etwa einem Monat einstellen werden.

Darüber hinaus ist langfristig noch mit Sekundärsetzungen aus dem Torf in einer Größenordnung von ca. 1 cm bis 3 cm zu rechnen. Nach Vorliegen der endgültigen Planung sind ergänzende Setzungsberechnungen zu empfehlen.

Für den Bau der Verkehrsflächen kann der Torf auf dem Erdplanum oder knapp unterhalb des Erdplanums anstehen. Der erforderliche Verformungsmodul von $E_{V2}=45~\text{MN/m}^2~\text{wird}$ dabei

erfahrungsgemäß nicht nachgewiesen werden können. Dieses ist nur bei sehr großen Überdeckungen von mind. 1,0 m ab Erdplanum möglich.

Eine Reduzierung bzw. Optimierung dieser Überdeckung kann ggf. durch Bodenverbesserungsmaßnahmen wie einer Vorbelastung des Torfes erfolgen. Die tatsächliche Schichtdicke der Überdeckung und Materialwahl ist am Beginn der Baumaßnahme mit Probefeldern zu ermitteln.

Gem. der Unterlage U8 (Arbeitspapier Torfüberbauung von IPROconsult GmbH) ist in Bau-km 0+673 evtl. eine zu geringe Überdeckung zum Torf vorhanden. Für diesen Bereich empfehlen wir mittels eines Probefeldes eine evtl. Reduzierung der Überdeckung zu prüfen. Ggf. können Geotextilien zum Einsatz kommen.

Die Standsicherheit der Aufhöhung der Straße bzw. des Dammkörpers gegen Spreizen in der Aufstandsfläche (örtliche Standsicherheit am Böschungsfuß) ist insbesondere aufgrund des Torfes nachzuweisen. Ggf. wird der Einsatz von Geotextilien erforderlich. Bei der Bemessung und Anwendung von Geotextilien sind die Empfehlungen der Forschungsgesellschaft für Straßen- und Verkehrswesen zu beachten. Erdstatische Nachweise sind gemäß der EBGEO¹⁷ der DGGT zu führen.

6.3 Ergänzende Geotechnische Hinweise für den Straßenbau

Gem. der Unterlage U7 liegt das Erdplanum für den Straßenbau höhenmäßig oberhalb des mittleren höchsten GW-Standes aber in Teilbereichen unterhalb des Niveaus des Bemessungsgrundwasserstandes, so dass Grundwasser bis zum Niveau der Frostschutzschicht (FSS) aufsteigen kann.

Bei der Planung der Straße ist eine entsprechende Entwässerung des Planums gem. RAS-Ew¹⁸ vorzusehen. Die Stärke der Frostschutzschicht ist entsprechend der RStO 12¹⁹ zu bemessen. Im Bereich der Frostschutzschicht gelten die Anforderungen an die Kornzusammensetzung des Frostschutzmaterials nach ZTV SoB-StB 04²⁰. Gleichfalls sind vorbeugende Maßnahmen gegen Frostschäden im "Merkblatt für die Verhütung von Frostschäden an Straßen"²¹ beschrieben.

Die Funktion einer Frostschutzschicht besteht darin, ggf. eindringendes Wasser schnell abzuführen und auch kapillar aufsteigendes Wasser in den Oberbau zu verhindern. Wir empfehlen zu prüfen, ob die Straßenoberkante ggf. in Bereichen, in denen das geplante Niveau der Erdplanums unterhalb des Bemessungswasserstandes liegt, angehoben werden kann, um eine Durchnässung des Straßenoberbaus zu verhindern.

Bei Transport und Lagerung des Austauschbodens bzw. der Frostschutzschicht ist sicherzustellen, dass der Wassergehalt beim Einbau in der Nähe des optimalen Wassergehalts, jedoch nicht darüber liegt. Ein zu nasses Material darf nicht eingebaut werden.

EBGEO 2. Auflage, April 2010: Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit Bewehrungen aus Geokunststoffen der Deutschen Gesellschaft für Geotechnik e.V.

 $^{^{18} \;\;}$ RAS-Ew - Richtlinien für die Anlage von Straßen - Teil: Entwässerung

¹⁹ RStO 12: FGSV-Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen, 2012

ZTV SoB-StB 04; Zusätzliche Technische Vertragsbedingungen und Richtlinien für den Bau von Schichten ohne Binde mittel im Straßenbau des FGSV, Ausgabe 2004 /Fassung 2007

²¹ Merkblatt für die Verhütung von Frostschäden an Straßen des FGSV

Evtl. Bodenaustauschmaßnahmen müssen die ganze Breite des Straßenkörpers unter Berücksichtigung einer Druckausbreitung unter 45° erfassen. Beim lagenweisen Einbau der Schüttstoffe ist die maximale Lagenstärke auf 0,3 m zu beschränken.

Vor der bereichsweisen Einbringung von Bodenaustauschmaterial ist die Aushubebene nachzuverdichten. Der Prüfumfang ist gemäß ZTVE-StB festzulegen. Zur Nachverdichtung von aushubbedingten Auflockerungen des Erdplanums beim Bodenabtrag, ggf. Bodenaustausch und Nachweis des erforderlichen Verformungsmodul von $E_{V2} = 45 \text{ MN/m}^2$ ist es erforderlich, dass sich der Grundwasserstand mind. 0,5 m unterhalb des Erdplanums befindet. Hierzu werden ggf. entsprechend der Jahreszeit und Tiefenlage des Erdplanums Wasserhaltungsmaßnahmen notwendig, s. Abschnitt 6.6.

Das Planum und auch die Aushubebene eines möglichen Bodenaustauschs sind mit Querneigung gem. den Vorgaben der ZTVE-StB 09 auszuführen.

Generell sind die anforderungsgerechte Tragfähigkeit und die Verdichtung ($D_{PR} \ge 1,0$) der Planumsflächen nachzuweisen. Als Methode zur Überprüfung der Bodenverdichtung bietet sich im vorliegenden Fall zur Lokalisierung von möglichen Schwachstellen ggf. die sog. "Flächendeckende Dynamische Qualitäts- und Verdichtungskontrolle" (FDVK) an.

Um ein Aufweichen des fertiggestellten Planums zu vermeiden, sollte dieses umgehend nach Freilegen abgedeckt werden. Sande mit wechselnden Schluffanteilen und humosen Einlagerungen sind aufgrund Ihrer Kornzusammensetzung frostgefährdet. Das freigelegte Planum ist daher auch gegen Frosteinwirkung zu schützen. Auf gefrorenem Boden darf nicht gegründet werden. Es empfiehlt sich daher, den Bauablauf derart zu terminieren, dass das Planum während der Wintermonate nicht freiliegt. Auf dem Planum anstehender aufgeweichter Sand mit wechselnden Schluffanteilen und humosen Einlagerungen bzw. durch Bauarbeiten oder Witterungseinflüsse in seiner Lagerung gestörter Sand mit wechselnden Schluffanteilen und humosen Einlagerungen ist vollständig auszuheben und durch Austauschboden zu ersetzen.

Der Mutterboden kann als Andeckboden wiederverwendet werden. Hierfür ist er an geeigneter Stelle in Halden bis zu einer Höhe von 1,5 m zwischenzulagern. Der ggf. auszubauende Sand mit wechselnden Schluffanteilen und humosen Einlagerungen kann für untergeordnete Erdbauwerke wie z. B. einen Lärmschutzwall wiederverwendet werden.

6.4 Bewertung der Versickerungsfähigkeit

Gemäß der Vorplanung (Unterlage U6) soll dort, wo es möglich ist, das Niederschlagswasser versickert werden. Hierbei soll die Versickerung von gering verschmutztem Wasser flächig über die belebte Bodenzone erfolgen. Ein <u>Abstand von 1,0 m von der Unterkante der Versickerungsanlage zum</u> mittleren höchsten Grundwasserstand ist dabei einzuhalten.

Wo die Schadstoffbelastung zu groß oder kein ausreichender Abstand zum Grundwasser vorhanden ist (oder durch Aufhöhung des Geländes hergestellt wird), soll gem. Unterlage U7 eine Reinigung und verzögerte Ableitung über gedichtete Mulden-Rigolen Systeme erfolgen. Das Leitungsnetz des öffentlichen Mulden-Rigolen-Systems (Erschließungsstraßen) kann gedrosselte und gereinigte Abflüsse aus Privat- und Gewerbeflächen aufnehmen. Für die Ableitung sollen alle drei vorhandenen Gewässer (Rethenbek, Abzugsgraben Fischbek, Stargraben), die Richtung Norden entwässern, genutzt werden.

Auf der Grundlage der bodenmechanischen Laborversuche kann für die <u>gewachsenen Sande mit schluffigen / humosen Beimengungen</u> unterhalb der Mutterbodenschicht eine hydraulische Durchlässigkeit für eine vertikale Versickerung von

 $k = 5 \times 10^{-5} \text{ m/s}$

zu Grunde gelegt werden.

Nach den bodenmechanischen Laborversuchen kann für die <u>gewachsenen Sande</u> unterhalb der Mutterbodenschicht eine hydraulische Durchlässigkeit für eine vertikale Versickerung von

 $k = 1 \times 10^{-4} \text{ m/s}$

angesetzt werden.

Zu berücksichtigen ist in diesem Zusammenhang ein möglicher Anstieg des Grundwasserstandes infolge des zusätzlichen Wassereintrages in den Untergrund durch Versickerungsanlagen. Ein höherer Aufstau des Grundwasserstandes an Gebäuden ist daher möglich und bezüglich seiner Auswirkungen auf die Trockenhaltung der Gebäude zu überprüfen.

6.5 Baugruben für Bauwerke der Entwässerung (Drosselschächte, Behandlungsanlagen, etc.) und Versorgungsleitungen

6.5.1 Allgemeines

Die nachfolgenden Angaben basieren auf den Unterlagen U6, U7, U9 und U10, s. Abschnitt 3. Sie sind entsprechend des Planungsstandes zu konkretisieren und verifizieren.

6.5.2 Erforderliche Baugrubentiefen

Die zur Erstellung der Leitungen erforderlichen Baugrubentiefen betragen nach derzeitigem Kenntnisstand je nach Ausführungsvariante etwa bis zu 2,0 m unter GOK. Für Schächte, Behandlungsanlagen, Abwasserpumpstation sind ggf. größere Baugrubentiefen erforderlich.

Für die Baugrubensicherung gelten grundsätzlich die Vorgaben der DIN 4124²².

6.5.3 Geböschte Baugruben / Baugrubenverbau

In Abhängigkeit der Platzverhältnisse kann die Baugrubensicherung geböscht ausgeführt werden. Ein maximaler Böschungswinkel von $\beta=45^\circ$ darf nicht überschritten werden. Im Nahbereich

²² DIN 4124: Baugruben und Gräben - Böschungen, Verbau, Arbeitsraumbreiten

bestehender Gebäude / Leitungen sind die Mindestabstände und Böschungsneigungen gemäß DIN 4123²³ einzuhalten.

Das Niveau der Baugrubensohlen mit bis zu ca. 2,0 m Tiefe bzw. größer liegt häufig unterhalb des erwarteten Grundwasserstandes. Hierfür werden dann Wasserhaltungsmaßnahmen erforderlich, s. Abschnitt 6.6.

Sofern die Platzverhältnisse für eine Böschung nicht ausreichend sind, wird ein Baugrubenverbau notwendig. Als mögliche Varianten für die Sicherung der Baugrubenwände kommen ein Spundwandverbau, ein Trägerbohlverbau und bei Streckenbauwerken auch ein Systemverbau wie z. B. ein Kringsverbau oder ein Normverbau nach DIN 4124 in Frage.

Bei der Herstellung eines Baugrubenverbaus ist grundsätzlich zu beachten, dass im Nahbereich zu Bestandsgebäuden oder Leitungen erschütterungsinduzierende und damit potentiell setzungserzeugende Einbringverfahren für Verbauelemente auszuschließen sind, um die Nachbarbebauung sowie auch ggf. erdverlegte Leitungen nicht zu beeinträchtigen. Dieses gilt insbesondere auch für den Torfbereich.

Für erforderliche Arbeits- und Seitenraumverfüllungen sind schluffarme, verdichtungsfähige und frostsichere Sande bzw. Kiessande (Feinkornanteil \leq 3 Gew.-% mit einem Ungleichförmigkeitsgrad $C_U > 3$, k-Wert $> 10^{-4}$ m/s nach DIN 18130-1) zu verwenden. Hierfür können bei entsprechender Eignung ggf. die anstehenden Fein- und Mittelsande aus eigenem Aushub wiederverwendet werden.

Bez. der Leitungen sind ggf. die Anforderungen der einzelnen Leitungsträger wie z. B. die ZTV-Siele²⁴ von HamburgWasser zu berücksichtigen.

6.5.4 Bemessung der Verbauwände

Die erdstatische Bemessung der Verbauwände ist auf Grundlage der Angaben in Abschnitt 5 durchzuführen. Des Weiteren sind die Empfehlungen des Arbeitskreises "Baugruben"²⁵ (EAB) zu beachten.

Im Bereich von unmittelbar an die Baugrube angrenzenden Straßen mit Leitungen im Straßenseitenbereich und im Nahbereich von Nachbargebäude / Bauwerken wird empfohlen, zur Minimierung der Verbauverformungen für die Verbauwände den erhöhten Erddruck mit

$$e' = \frac{1}{2} \cdot (e_a + e_0)$$
 mit $k_0 = 1 - \sin \varphi'$

anzusetzen.

Setzungen, die infolge von Verbauverformungen in angrenzenden Flächen auftreten, sind erfahrungsgemäß unvermeidbar. Entsprechende Nacharbeiten insbesondere zur Wiederherstellung etwaig versiegelter Geländeoberflächen können daher ggf. erforderlich werden.

²³ DIN 4123: Ausschachtungen, Gründungen und Unterfangungen im Bereich bestehender Gebäude

²⁴ ZTV – Siele Hamburg: Zusätzliche Technische Vertragsbedingungen für den Bau von Sielen in Hamburg

²⁵ EAB: Empfehlungen des Arbeitskreises "Baugruben", Verlag Ernst & Sohn

6.5.5 Horizontale Stützung der Verbauwände

Bei erforderlichen Baugrubentiefen von bis zu ca. 3,0 m wird erfahrungsgemäß keine horizontale Stützung der Verbauwände (Aussteifung bzw. Verankerung) erforderlich. Bei Bedarf können hierfür Bemessungsangaben geliefert werden.

6.6 Wasserhaltungmaßnahmen

Entsprechend der Jahreszeit bzw. des Niederschlaggeschehens und der Baugrubentiefe kann bei der Ausführung von Erdarbeiten Stau-, Tag- und Grundwasser auftreten. Die Fassung kann generell in einer offenen Wasserhaltung ggf. in Verbindung mit Dränsträngen erfolgen. Bei Bedarf bzw. Erfordernis, wie z.B. bei größeren Absenktiefen für Schachtbauwerke, Pumpwerke etc., kann eine geschlossene Wasserhaltung z.B. mit Kleinfilter- oder Schwerkraftbrunnen notwendig werden.

Bez. der Ermittlung der Reichweite von Absenkmaßnahmen können die Durchlässigkeitswerte gem. Abschnitt 6.4 zugrunde gelegt werden. Die Auswirkungen von Absenkmaßnahmen hängen von der Absenktiefe, Grundwasserständen, hydraulischen Durchlässigkeiten der anstehenden Böden und Dauer der Maßnahmen ab und sind im konkreten Einzelfall zu bewerten. Bei der Planung von Wasserhaltungsmaßnahmen ist zu berücksichtigen, dass das Planungsgebiet im Wasserschutzgebiet Süderelbmarsch (Schutzzone III) liegt.

Um eine Nachverdichtung des Aushubplanums zu ermöglichen, empfehlen wir, das Absenkziel auf mind. 0,5 m unter Aushubsohle anzusetzen.

Eine Einleitung von Baugrubenwasser in einen Vorfluter oder in ein Siel erfordert eine Genehmigung. Ein entsprechender Antrag ist bei den zuständigen Behörden zu stellen. Bez. der chemischen Analyseergebnisse des Grundwassers siehe Abschnitt 4.6.

In Abhängigkeit der Beschaffenheit des Entnahmewassers kann es erforderlich werden, das Wasser vor einer Einleitung in Oberflächengewässer oder die Kanalisation ggf. mittels entsprechender im Baufeld zu installierender Anlagen aufzubereiten.

Es wird generell empfohlen Erdarbeiten, für die Wasserhaltungsmaßnahmen erforderlich werden, in der trockenen Jahreszeit auszuführen.

6.7 Schmutzwasserpumpwerk

6.7.1 Allgemeines, Herstellung und Gründung

Die geplante Lage des Schmutzwasserpumpwerks ist in der Anlage 2 dargestellt. Es liegt im Nordwesten des Planungsgebietes nördlich der Gewerbestraße und westlich der Rethenbek (s. a. Abbildung 1).

Gem. Unterlage U12 soll das Schmutzwasserpumpwerk einen Durchmesser von ca. 2,5 m bis 3,0 m aufweisen. Die Sohle des Pumpwerks ist auf einem Niveau von +1,2 mNHN geplant (s. Unterlage U8). Unter der Annahme einer Dicke der Sohlplatte von rd. 0,5 m liegt die Unterkante der Sohlplatte bei ca. +0,7 mNHN, entsprechend rd. 5,7 m unter Gelände (OK Gelände auf ca. +6,4 mNHN).

Der im Februar 2020 gemessene Grundwasserstand lag gem. der Kleinrammbohrung BS44 (s. Anlage 3.13) bei rd. +3,8 mNHN. Ein abgesenkter Grundwasserspiegel sollte bei rd. 0,5 m unterhalb der Baugrubensohle, entsprechend rd. +0,2 mNHN, liegen. Hieraus errechnet sich für eine Wasserhaltung ein Absenkmaß von rd. 3,6 m.

Aufgrund der Lage des Bauwerkes im Wasserschutzgebiet, des Absenkmaßes von rd. 3,6 m und der daraus resultierenden hohen Fördermenge, der Reichweite des Absenktrichters, der Nähe zur Bahnstrecke und möglichen Setzungen wird eine Grundwasserabsenkung nicht empfohlen.

Für die Herstellung der Baugrube bietet sich die Ausführung einer wasserdichten Baugrube mit Spundwänden und Unterwasserbetonsohle an.

Für die Herstellung und Gründung des Schmutzwasserpumpwerks wird folgende Vorgehensweise empfohlen:

- 1. Herstellung einer wasserdruckhaltenden Spundwandbaugrube mit gedichteten Spundwandschlössern in den erforderlichen Abmessungen von ca. 3,5 m x 3,5 m in der Draufsicht. Einbindung der Spundwandprofile nach statischer Erfordernis einige Meter unterhalb der Aushubsohle der Unterwasserbetonsohle in den Sanden, ca. bis -7 mNHN, d. h. ca. 12 m bis 13 m lange Spundbohlen. Aussteifung der Baugrube mit Aussteifungsrahmen.
- 2. Teilweiser Unterwasseraushub des Sandes.
- 3. Einbringen einer Unterwasserbetonsohle.
- 4. Lenzen der Baugrube und Herstellung einer ca. 30 cm dicken Drainageschicht mit Restwasserfassung.
- 5. Gründung des Pumpwerks auf der Drainageschicht.
- 6. Verfüllen der Seitenräume mit geeignetem Material.

Als Alternative zu einer Unterwasserbetonsohle ist auch eine tiefliegende Sohle, die im Düsenstrahlverfahren (DSV) hergestellt wird, möglich. Hierbei sind die Spundwände dementsprechend tief zu führen.

Für das Schmutzwasserpumpwerk ist die Auftriebssicherheit unter Ansatz des in Abschnitt 5.2 aufgeführten Bemessungswasserstandes des Grundwassers nachzuweisen. Ggf. ist das Schmutzwasserpumpwerk zur Ballastierung mit Sporn auszubilden oder ggf. mit der Unterwasserbetonsohle zu verbinden.

Die Kleinrammbohrung BS43 wurde bis in eine Tiefe von rd. -3,7 mNHN ausgeführt. Zur Nacherkundung des darunter anstehenden Baugrundes empfehlen wir die Ausführung einer Spitzendrucksondierung bis in eine Tiefe von mind. –14 mNHN.

6.7.2 Setzungen des Schmutzwasserpumpwerks

Bei ordnungsgemäßer Ausführung des Aushubes der Sande und der Unterwasserbetonsohle sind Setzungen für das Schmutzwasserpumpwerk im Zuge der Herstellung und Wiederverfüllung der Baugrube in einer Größenordnung von

 $s \approx 0.5$ cm bis 1.0 cm

zu erwarten.

6.7.3 Verbauwände

Bei der Herstellung des Baugrubenverbaus mit Spundwänden ist der Abschnitt 6.5.3 zu beachten.

Bei der Spundwandbemessung sind die Bemessungswasserstände gem. Abschnitt 5.2 zugrunde zu legen. Für die Spundwand kann beim Nachweis der Vertikalkräfte im tragfähigen Sand (Schicht S5) von einer Mantelreibung von $q_{s,k} = 20 \text{ kN/m}^2$ und einem Spitzendruck $q_{b,k} = 9.000 \text{ kN/m}^2$ (bezogen auf die Stahlquerschnittsfläche) ausgegangen werden. Auf der Grundlage der noch ergänzend auszuführenden Drucksondierung, s. Abschnitt 6.7.1, sind die o.g. Kennwerte zu verifizieren.

6.7.4 Bemessung der Verbauwände

Für die Bemessung des Baugrubenverbaus ist der Abschnitt 6.5.4 zu berücksichtigen.

6.7.5 Wasserhaltung für das Schmutzwasserpumpwerk

Beim Bodenaushub für die Unterwasserbetonsohle muss der Wasserspiegel im Innern der Baugrube durch Zupumpen von Wasser stets höher gehalten werden als der Grundwasserspiegel, um eine Grundwasserströmung in die Baugrube und damit eine Auflockerung der Sande zu vermeiden. Parallel zur Bauausführung laufende Pegelmessungen in einem neben der Baugrube zu erstellenden Rammfilterpegel können zur Einstellung des Wasserspiegels genutzt werden.

Für die Baugrubenvariante mit einer tiefliegende DSV-Sohle ist in einem ersten Schritt zunächst das Porenwasser bis 0,5 m unterhalb der Baugrubensohle zu fassen Danach sind nur noch Restwassermengen und Niederschlagsmengen ggf. über eine Drainage zu fassen und abzuleiten.

6.7.6 Hinweise zur Bauausführung

Vor dem Einbau der Unterwasserbetonsohle ist sicherzustellen, dass Schwebstoffe und ggf. Schluffe restlos ausgehoben worden sind und keine Sedimentschicht auf der Sohle verblieben ist, um mögliche Schichteinschlüsse in der UW-Betonsohle auszuschließen. Ggf. sind die Sedimente vollständig auszuheben oder beispielsweise abzusaugen.

6.7.7 Herstellung der Druckleitung

Nach den derzeitigen Planungen soll vom Schmutzwasserpumpwerk das Abwasser über eine Druckleitung (ca. DN 150) in nördlicher Richtung an zwei vorhandene Überlandleitungen (DR 700 und DR 350) abgeleitet werden. Der Abstand des Schmutzwasserpumpwerkes zu den Überlandleitungen beträgt rd. 120 m. Die Tiefenlage der Überlandleitungen ist nicht bekannt.

Die Trassierung der neuen Druckleitung ist parallel zur Rethenbek auf der Ostseite bzw. alternativ auf der Westseite, s. Abbildung 1, vorgesehen. Gem. Unterlage U12 ist für die neue Druckleitung eine Tiefenlage von ca. bis zu 2 m unter Gelände geplant. In Trassenlage stehen unterhalb von Mutterböden Sande an (s. Anlage 3, Schnitt 3.1 bzw. 3.13). Das Grundwasser stand zum Bohrzeitpunkt ab ca. 2,2 m unter Gelände (Kleinrammbohrung BK102) an.

Die Druckleitung kann bei den gegebenen Randbedingungen vorzugsweise in offener Bauweise mit geböschten Baugrubenseiten hergestellt werden. Hierbei darf gem. DIN 4124²⁶ bei den überwiegend anstehenden sandigen Böden ein Böschungswinkel von $\beta = 45^{\circ}$ nicht überschritten werden. Die Ausführungen des Abschnittes 6.5 sind sinngemäß zu berücksichtigen.

Für die Querung der Gleisanlagen der Deutsche Bahn AG ist nach Vorliegen konkreter Planungen (Tiefenlage, Durchmesser etc.) ein separates Gutachten unter Beachtung der bahnspezifischen Belange (Thema: Leitungskreuzung) zu erstellen.

Für eine Herstellung der Druckleitung im Rohrvortriebsverfahren ist insbesondere das Arbeitsblatt DWA-A 125²⁷ zu beachten.

Für das Vortriebsverfahren stehen folgende Verfahren zur Verfügung:

Nichtsteuerbare Rohrvortriebsverfahren und verwandte Verfahren (für Rohraußendurchmesser bis maximal 2 m und auch für kleine Rohraußendurchmesser einsetzbar):

Eine Übersicht der unbemannten nichtsteuerbaren Verfahren und ihrer Erfahrungswerte für den Anwendungsbereich ist in der DWA-A 125, Seite 32, Tabelle 7 dargestellt.

Steuerbare Rohrvortriebsverfahren:

Eine Übersicht der unbemannten steuerbaren Verfahren und ihrer Erfahrungswerte für den Anwendungsbereich ist in der DWA-A 125, Seite 73, Anhang B dargestellt.

Beim Rohrvortrieb können Setzungen u.a. infolge der Rohreinbringung z.B. durch einen Überschnitt des Vortriebsrohres, Bodenverlusten sowie einer allgemeinen Auflockerung des anstehenden Bodens entstehen. Aussagen zu den Setzungen können nach Vorliegen der konkreteren Planungen gegeben werden.

Für die Start- und Zielbaugruben für einen Rohrvortrieb gelten die Ausführungen des Abschnittes 6.5.

Für den Anschluss an die vorhandenen Überlandleitungen empfehlen wir, die Tiefenlage mittels Suchschürfen zu erkunden.

²⁶ DIN 4124: Baugruben und Gräben - Böschungen, Verbau, Arbeitsraumbreiten

²⁷ Arbeitsblatt DWA-A 125, Rohrvortrieb und verwandte Verfahren, DWA- Regelwerk,

6.8 Östlicher Knoten der B73

Beim östlichen Knoten fällt das Gelände in Richtung Norden. Aufgrund der Fahrbahnaufweitung um eine Spur in Richtung Norden ist eine Verbreiterung des Dammes erforderlich. Die Dammhöhe im Bereich der Verbreiterung beträgt bis zu ca. 3 m. Die neue Böschungsneigung soll 1 : 1,5 betragen.

Im Bereich der Dammverbreiterung ist der Mutterboden abzutragen und eine Verzahnung in Stufen mit einer Höhe von ca. 0,6 m bis 1,0 m mit der Bestandsböschung herzustellen. Die genaue Abtragstiefe ist vor Ort festzulegen.

6.9 Lärmschutzwand an der Kommunaltrasse

Am östlichen Ende der Kommunaltrasse, s. Abbildung 1, soll gem. Unterlage U8 zum Schutz der vorhandenen Bebauung gegen Lärm ggf. eine Lärmschutzwand errichtet werden. Über die Gründung und Ausbildung liegen uns zurzeit keine Unterlagen vor.

Die Lärmschutzwand kann je nach Ausbildung flach- oder auch tief gegründet werden. Tragfähige Sande stehen ab einem Niveau von ca. +4,6 mNHN an (OK Gelände i. M bei rd. +5,75 mNHN, s. Anlage 3.19). Bei Bedarf können Bemessungswerte für Fundamente oder Tiefgründungselemente gegeben werden.

6.10 Ehemalige Panzerrampe von der Ecke Am Moor – Wegverbindung S-Bahn

Der in Richtung Süd-Nord-Verbindung verlaufende Weg auf der ehemaligen Trasse der Panzerrampe soll als Fuß- und Radwegverbindung in Richtung Schule Ohrnsweg und zur S-Bahnhaltestelle Fischbek ausgebildet werden (s. Abbildung 1 bzw. Anlage 2).

Im Bereich der Rampenkonstruktion der S-Bahnhaltestelle Fischbek ist gem. Unterlage U8 eine Fahrradabstellanlage u. a. in doppelstöckiger Aufstellung vorgesehen. Die Fahrradabstellanlage soll als Treppenanlage ausgebildet werden. Ein Längsprofil der Fuß- und Radwegverbindung bzw. Querprofile der Fahrradabstellanlage liegen uns nicht vor.

Der zu betrachtende Bereich der ehemaligen Panzerrampe ist in leichter Dammlage zum gegenüberliegenden Gelände im Verbreitungsbereich der Moorböden errichtet worden (s. Abbildung 2 und Abbildung 3). Gem. der ergänzend ausgeführten Baugrunderkundung im Jahr 2020 wurde die ehemalige Panzerrampe bereichsweise auf dem Torf- bzw. Mutterboden aufgebaut (s. Anlage 3, Schnitt 3.16 und Schnitt 3.17).

Der Bestandsdamm besteht unterhalb von örtlichen Mutterböden und Gleisschotterresten überwiegend aus verdichtungsfähigen Sanden. Nach dem Abschieben der vorgenannten Böden sollte ein Verformungsmodul von $E_{V2} = 45 \text{ MN/m}^2$ auf dem Erdplanum erreichbar sein. Die Ausführungen des Abschnittes 6.3 (Ergänzende Geotechnische Hinweise für den Straßenbau) gelten für die Ausbildung der Fuß- und Radwegverbindung sinngemäß. Die Setzungen des Radweges auf der ehemaligen Panzerrampe werden aufgrund der Vorbelastung des Torfes und der Verkehrslasten vernachlässigbar gering sein. Voraussetzung hierfür ist der Verbleib der neuen Trasse des Radweges in der alten Trasse der Panzerrampe.

Westlich der ehemaligen Panzerrampe ist ein Retentsions- und Reinigungsgraben vorgesehen. Mit der Kleinrammbohrung BS57 (s. Anlage 3, Schnitt 3.16) wurde in einem Teilbereich des Retentsions- und Reinigungsgrabens Torf in einer Dicke von d = 0,8 m erkundet. Wir empfehlen zu prüfen, wie in diesem Bereich mit dem Torf verfahren werden soll (Thema: Geländehöhen, Modellierung, Aushub etc.).

Westlich der Rampe der Unterführung zur S-Bahnhaltestelle Fischbek ist südlich der Gleisanlagen eine Fahrradabstellanlage geplant (s. Anlage 2). Aufgrund der Dammlage der Gleisanlage ist eine Verbreiterung des Dammes erforderlich. Der Geländesprung beträgt ca. bis zu 1,7 m. Bereichsweise soll der Geländesprung über Winkelstützmauern abgefangen bzw. als eine Treppenanlage ausgebildet werden.

Im Bereich der Dammverbreiterung und Fahrradabstellanlage sind der anstehende Mutterboden, die zwischengeschalteten sandigen Auffüllungen und auch der überschüttete Mutterboden (s. Kleinrammbohrungen BS65 bis BS68, Anlage 3, Schnitt 3.17) bis in eine Tiefe von 1,3 m unter Gelände (ca. +3,0 mNHN) abzutragen und durch geeigneten Füllboden zu ersetzen. Die genaue Abtragstiefe ist vor Ort festzulegen. Mit der Bestandsböschung ist eine Verzahnung in Stufen mit einer Höhe von ca. 0,6 m bis 1,0 m herzustellen. Je nach jahreszeitlicher Ausführung können für den Bodenaustausch Maßnahmen für eine offene Wasserhaltung, bei hohem Wasserandrang auch geschlossener Wasserhaltung, erforderlich werden.

Die Empfehlungen des Abschnittes 6.5 gelten für die Erdarbeiten sinngemäß. Ggf. werden für die Bodenaustauschmaßnahmen ein abschnittweises Arbeiten oder Verbaumaßnahmen erforderlich. Zur Überprüfung der Böschungsstandsicherheit sind ggf. Geländebruchberechnungen gem. DIN 4084²⁸ (Lamellenverfahren nach Bishop) in Verbindung mit dem Handbuch EC 7²⁹ für den Nachweis des Grenzzustandes GEO-3 (Grenzzustand des Versagens durch Verlust der Gesamtstandsicherheit) durchzuführen. Bezüglich des Dammanschlusses an die Gleisanlagen der Deutsche Bahn AG ist die RIL 836³⁰ zu berücksichtigen. Die Maßnahmen sind mit der DB AG abzustimmen. Nach dem Vorliegen detailierter Planungen und Querprofilen können zum Bau der Fahrradabstellanlage nähere Aussagen getroffen werden.

7 Zusammenfassung

Die IBA Hamburg GmbH plant in Hamburg, Stadtteil Neugraben - Fischbek, die Erschließung und Vermarktung des Gebiets "Fischbeker Reethen (NF 67)". Das Erschließungsgebiet liegt nördlich der Cuxhavener Straße, weist eine Größe von ca. 70 ha auf und ist überwiegend unbebaut.

Zur Erschließung ist u.a. ein umfangreiches Straßen- und Wegenetz herzustellen. Im Nordosten sind Geländeaufhöhungen aufgrund hoher Grundwasserstände vorgesehen. Das auf den befestigten Oberflächen anfallende Wasser soll nach Möglichkeit versickert oder in gedichteten Mulden-Rigolen-Systemen verzögert in Vorflutern abgeleitet werden.

Zur Überprüfung der Tragfähigkeit der anstehenden Böden im Hinblick auf die Anforderungen an das Planum der geplanten Verkehrsflächen sowie als Grundlage zur Beurteilung der

²⁸ DIN 4084: Baugrund - Geländebruchberechnungen

²⁹ Handbuch Eurocode 7, Geotechnische Bemessung, Band 1: Allgemeine Regeln

³⁰ Richtlinie 836 – Erdbauwerke und sonstige geotechnische Bauwerke planen, bauen und instand halten

Versickerungseigenschaften der anstehenden Böden wurden insgesamt 80 Kleinrammbohrungen und 8 leichte Rammsondierungen durchgeführt. Im Zuge der ergänzenden Baugrunderkundung für Druckleitungen, Straßen- und Wegeerweiterungen und Sonderbauwerke wurden zusätzlich insgesamt 39 Kleinrammbohrungen und 19 leichte Rammsondierungen abgeteuft.

Demnach stehen unterhalb des Mutterbodens verbreitet tragfähige Sande und untergeordnet Sande mit schluffigen und humosen Beimengungen an. Im Nordosten wurden ab GOK Torfe erkundet, die im Bereich der Panzerrampe überschüttet wurden, s. Abschnitt 4.2.

Die Ergebnisse chemischer Untersuchungen von Boden- und Wasserproben sind in den Abschnitten 4.5 und 4.6 dargestellt.

Die charakteristischen Bodenkennwerte für erdstatische Berechnungen sind in Abschnitt 5 angegeben.

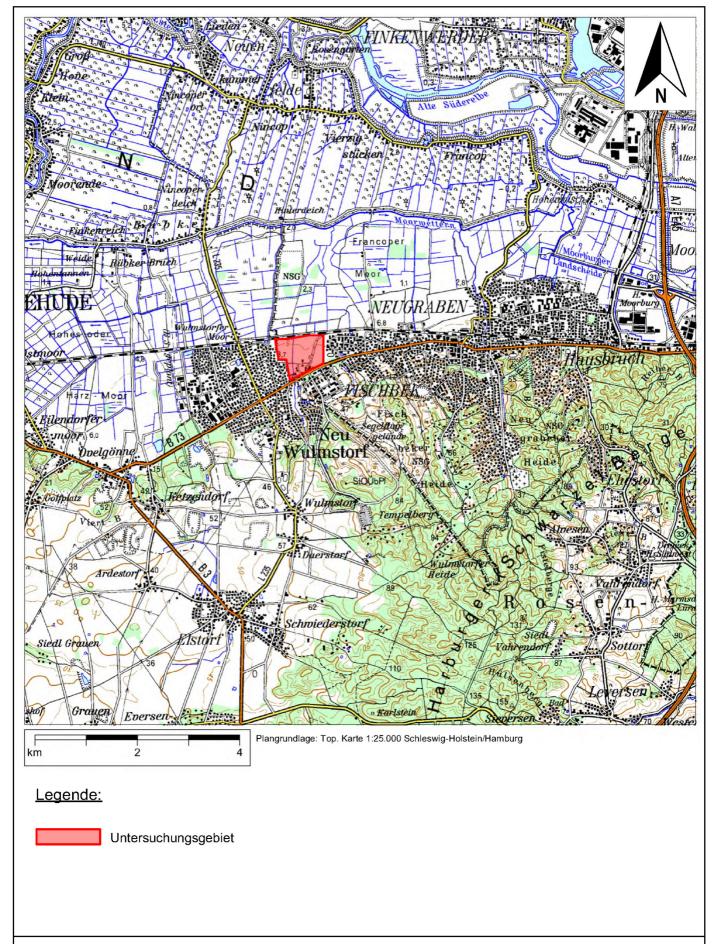
Aufgrund der vielfach anstehenden sandigen Böden, ist zu erwarten, dass der gem. ZTVE-StB 09 auf dem Erdplanum einzuhaltende Verformungsmodul von E_{V2} = mind. 45 MN/m² nachzuweisen sein wird. Ggf. sind für die schluffigen, humosen Sande Planumsverbesserungen durch Bodenaustauschmaßnahmen auszuführen, s. Abschnitt 6.2.2.

Für die vorgesehenen Aufhöhungsbereiche im Nordosten mit Vorkommen von Torf im Untergrund ist eine Überschüttung des Torfes vorgesehen, s. Abschnitt 6.2.3.

Die zur Überprüfung der Versickerungsfähigkeit ausgeführten Kleinrammbohrungen haben gezeigt, dass in dem Sandboden eine Versickerung möglich ist. Jedoch werden aufgrund der teilweise geringen Flurabstände gedichtete Systeme mit Zwischenspeicherungen und stark gedrosselten Abgaben aus den Zwischenspeichern in Vorflutgräben erforderlich.

Ergänzende Geotechnische Hinweise zum Straßenbau sind im Abschnitt 6.3 aufgeführt.

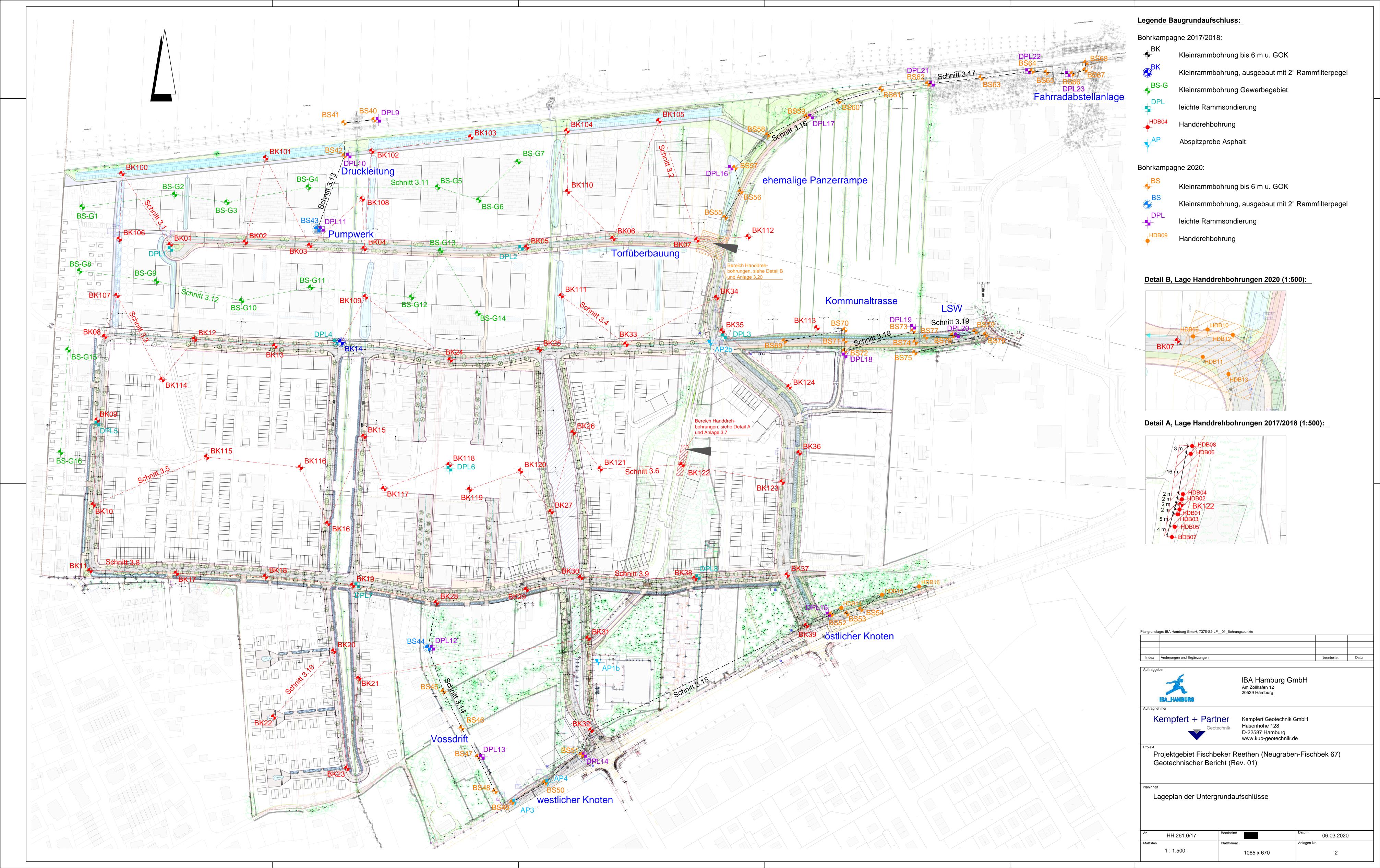
Erläuterungen zu Baugruben und ggf. Wasserhaltungsmaßnahmen sind in den Abschnitten 6.5 und 6.6 dargestellt.


Die Themenbereiche der ergänzenden Baugrunderkundung werden u.a. in den Abschnitten 6.7 für das Schmutzwasserpumpwerk und die Druckleitungen, im Abschnitt 6.8 für den östlichen Knoten der B73, im Abschnitt 6.9 für die Lärmschutzwand an der Kommunaltrasse und im Abschnitt 6.10 für die Wegverbindung zur S-Bahn an der Panzerrampe behandelt. Zum Arbeitspapier zur Torfüberbauung der IPROconsult GmbH wird im Abschnitt 6.2.3 Stellung genommen.

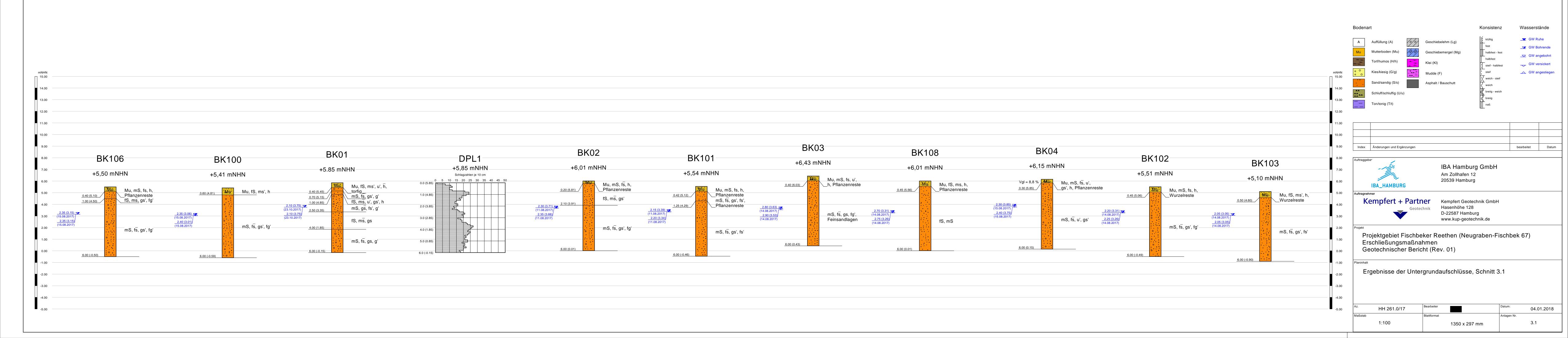
Kempfert Geotechnik GmbH

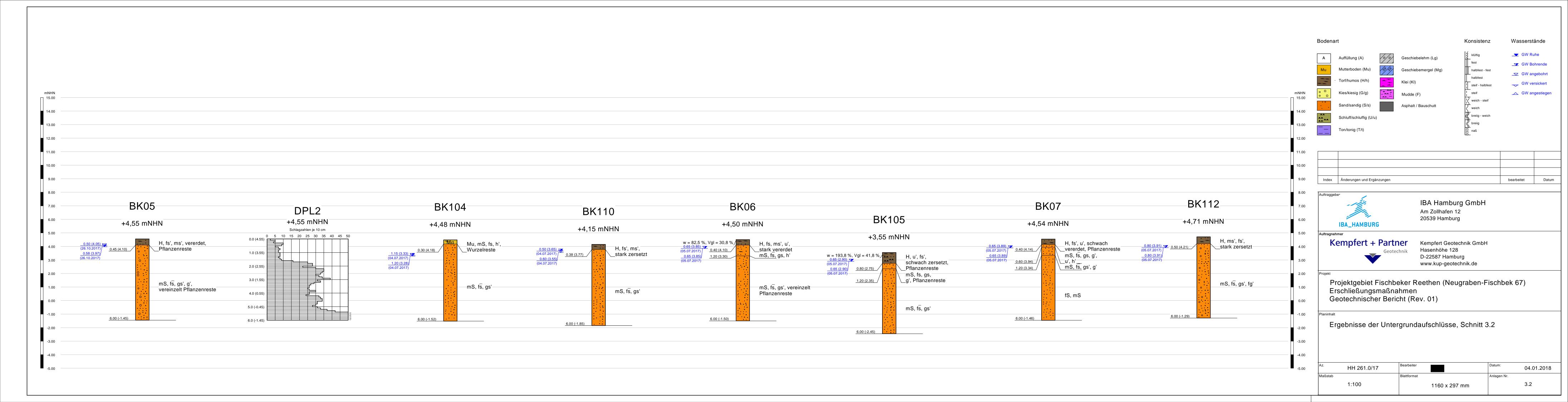
Übersichtslageplan

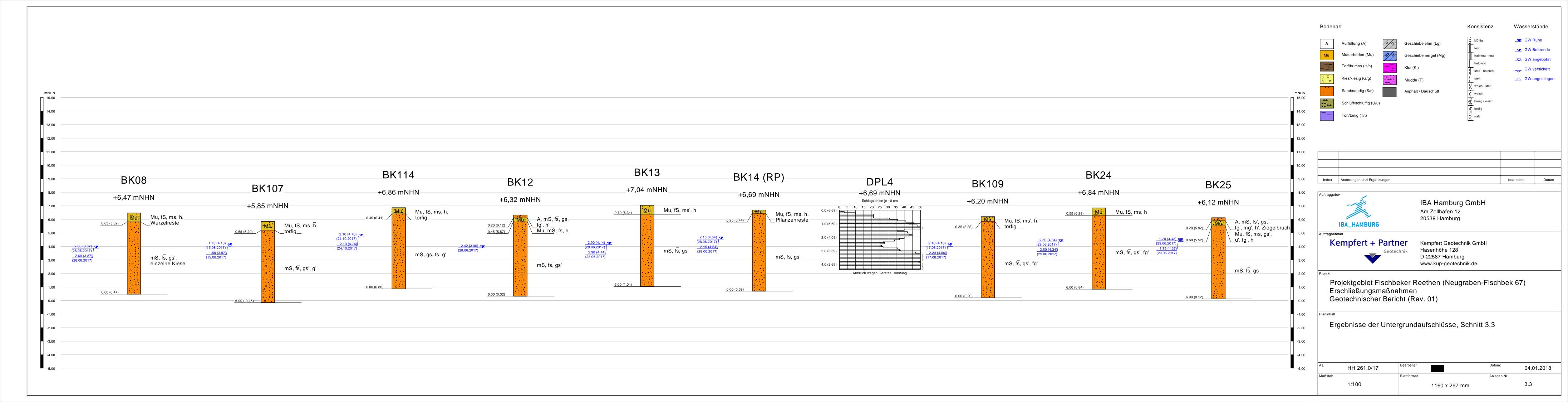
Fischbeker Reethen (Neugraben - Fischbek 67) – Erschließungsmaßnahmen Geotechnischer Bericht (Rev. 01) Übersichtslageplan

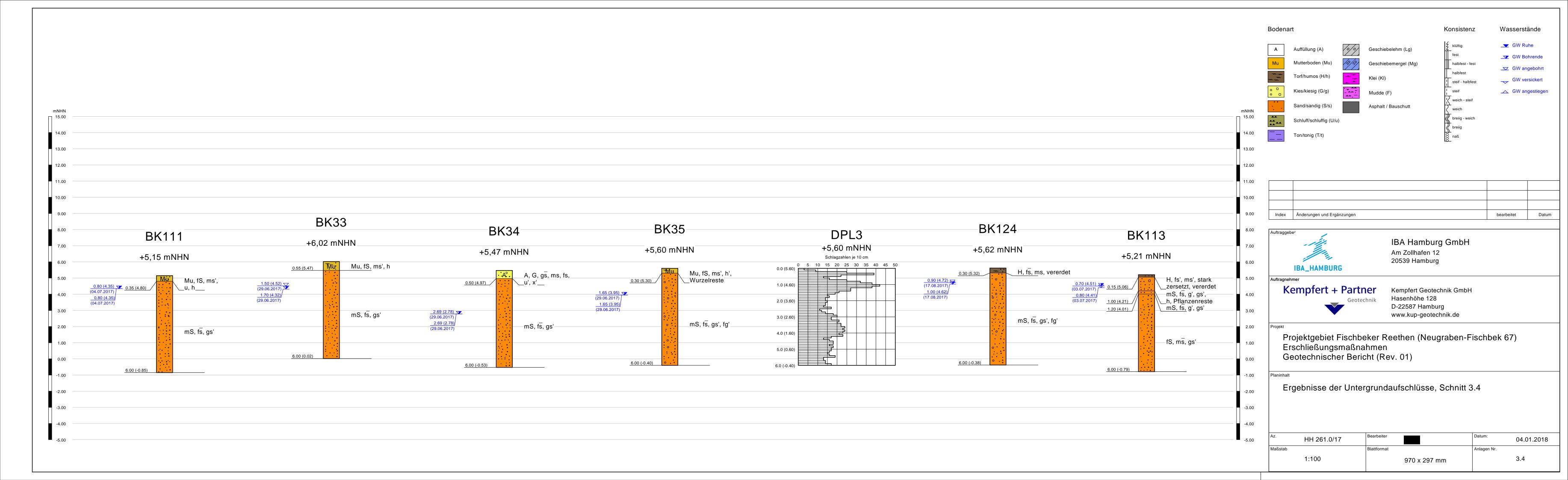


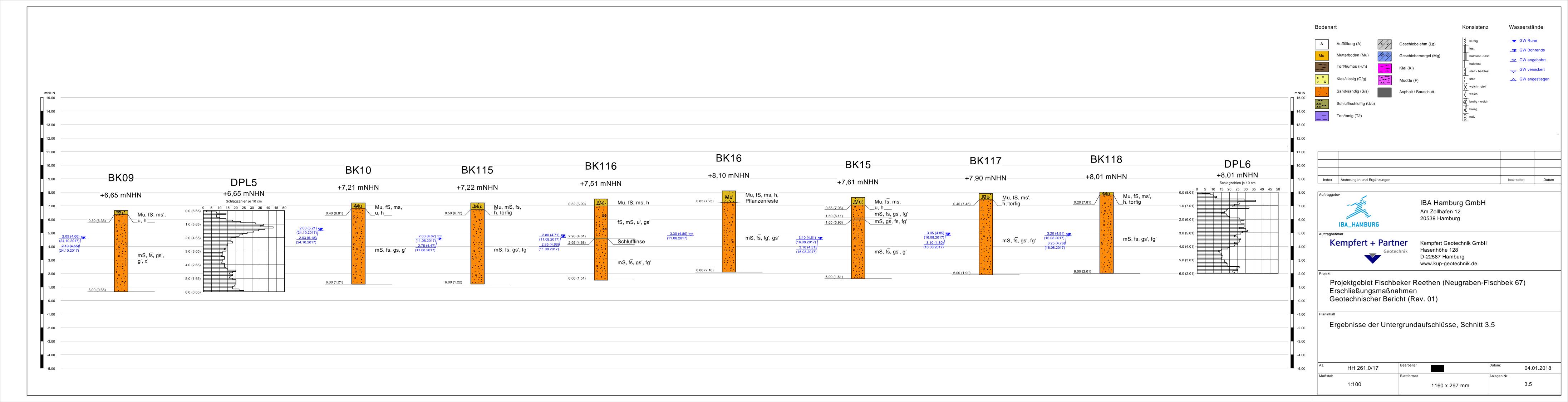
Geotechnik

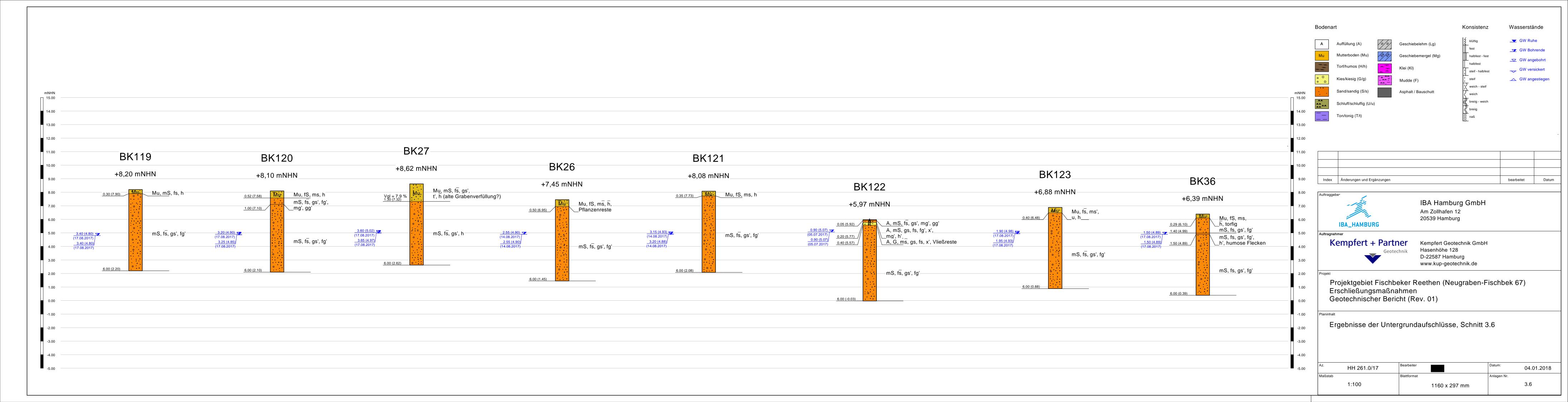

Kempfert Geotechnik GmbH Hasenhöhe 128 D-22587 Hamburg www.kup-geotechnik.de Maßstab: -Az.: 261.0/17 Datum: 31.03.2020 Anlagen Nr.

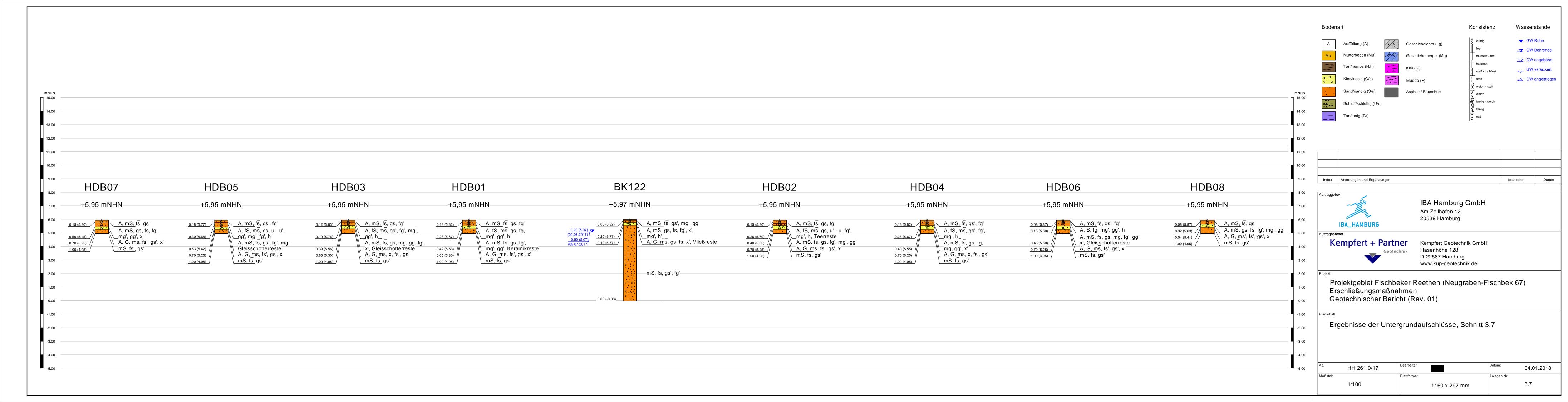

1

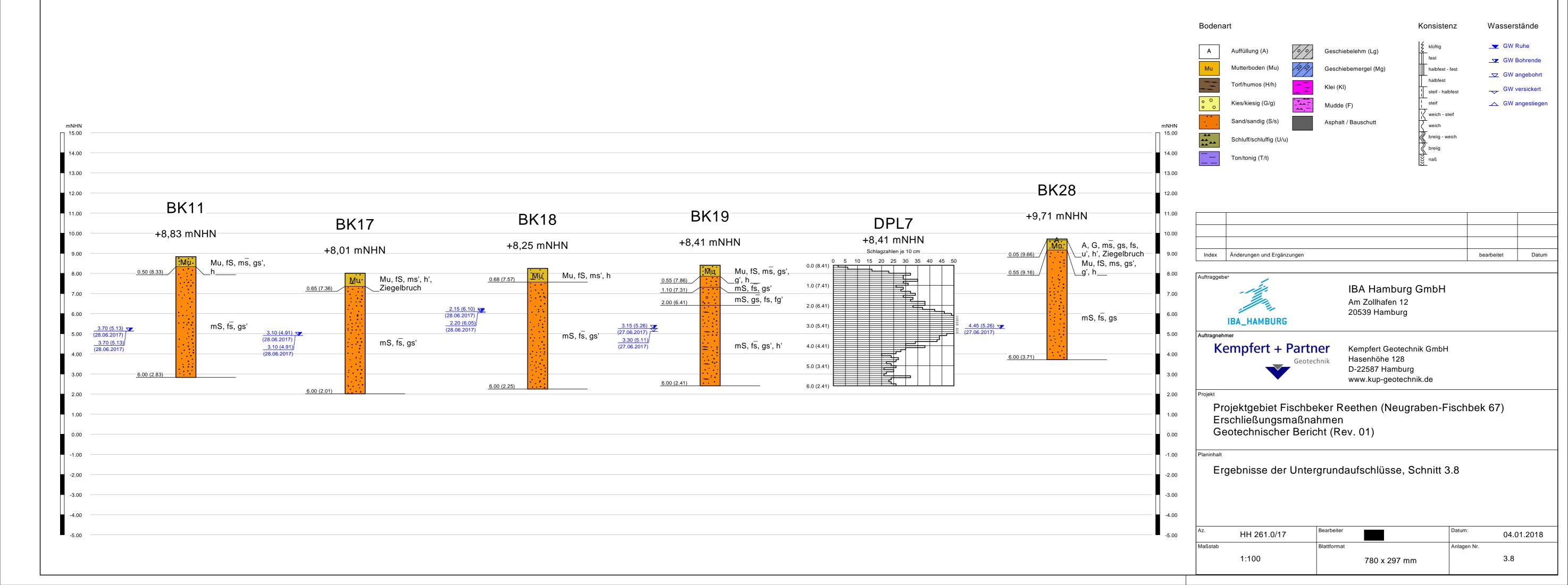

Lageplan der Untergrundaufschlüsse

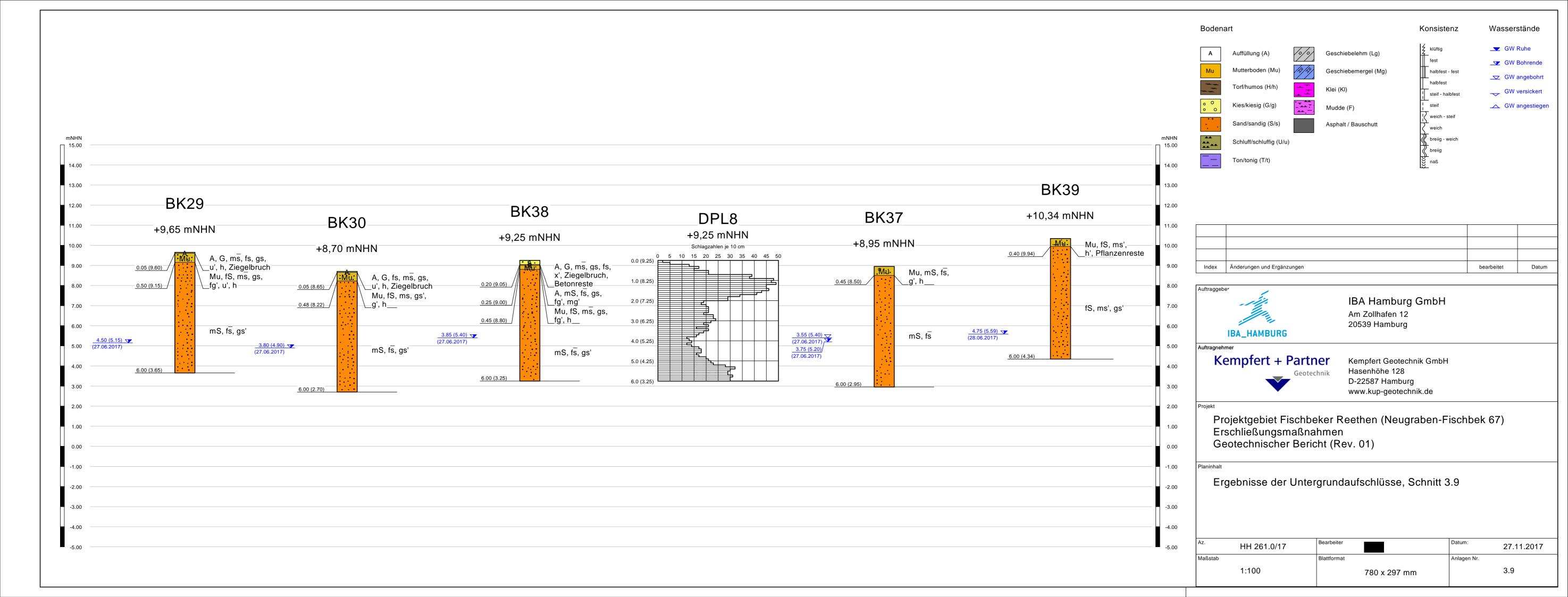


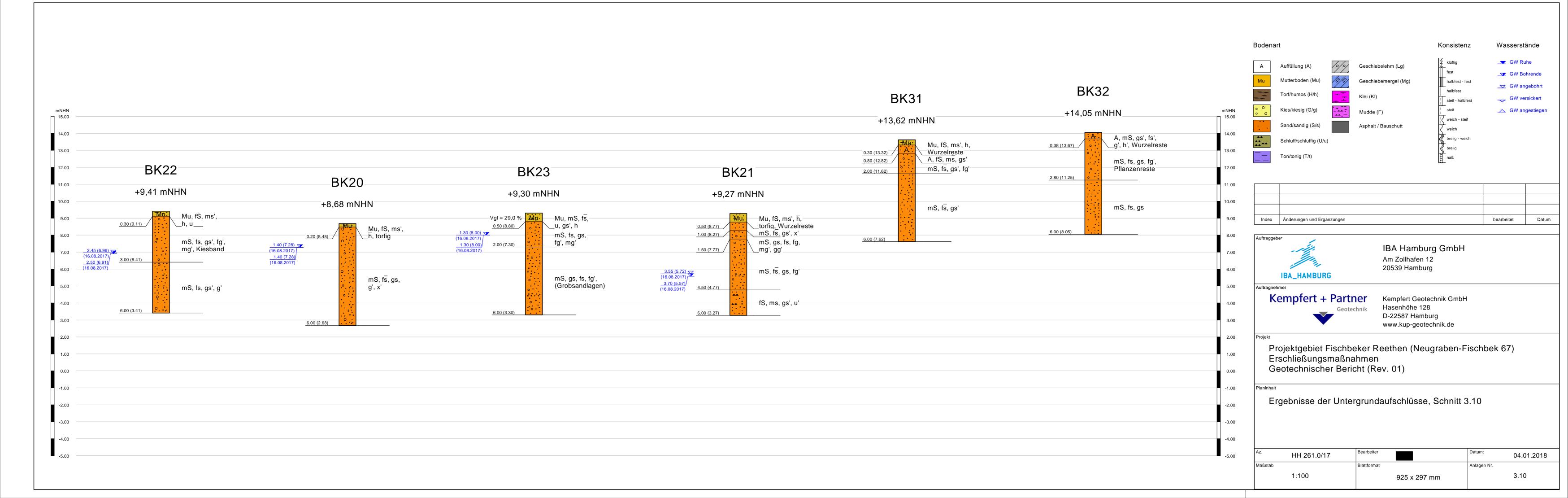

Ergebnisse der Untergrundaufschlüsse



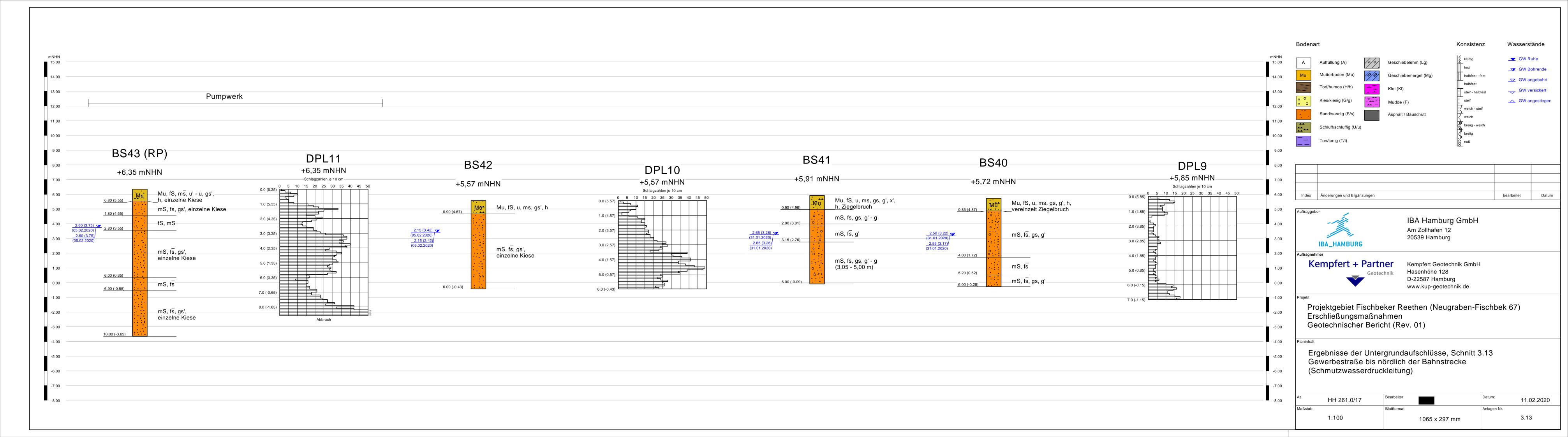


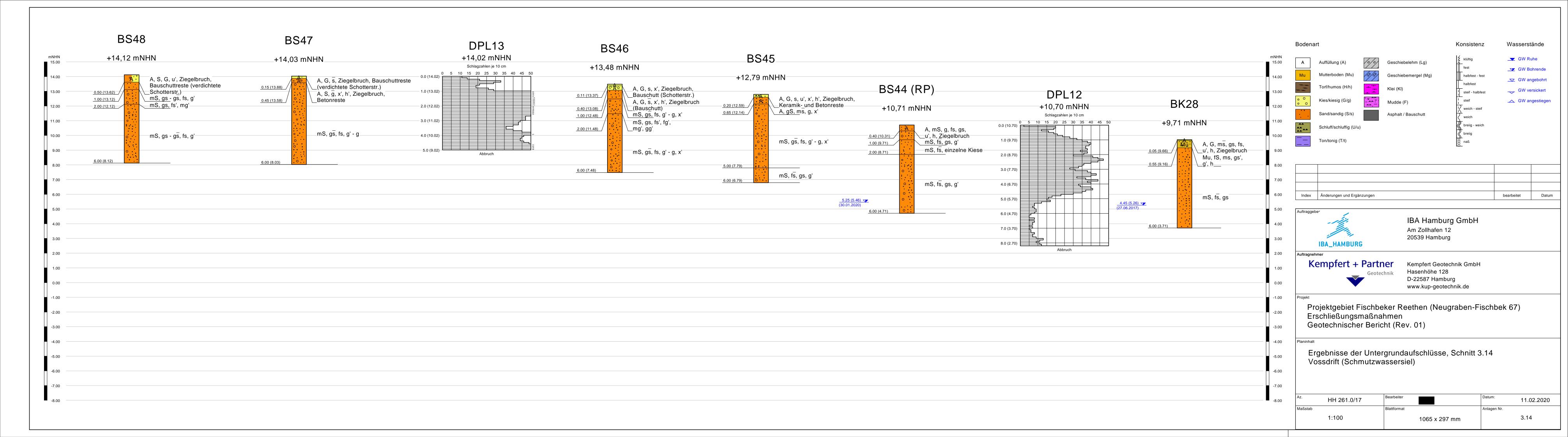


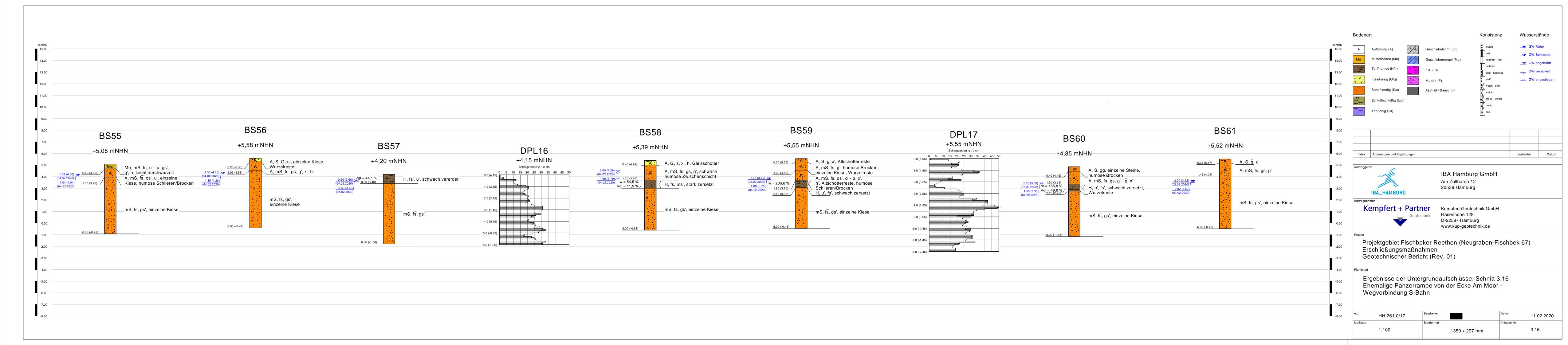


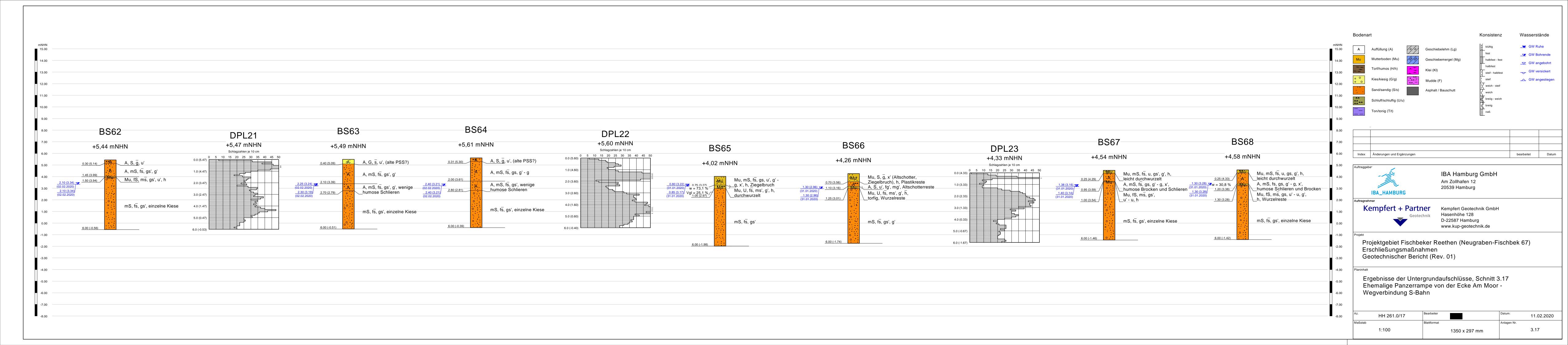


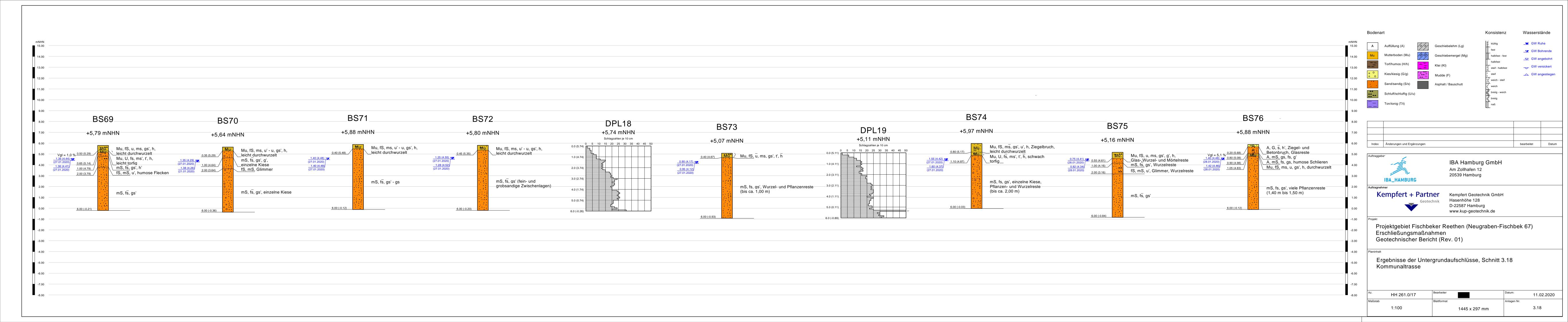


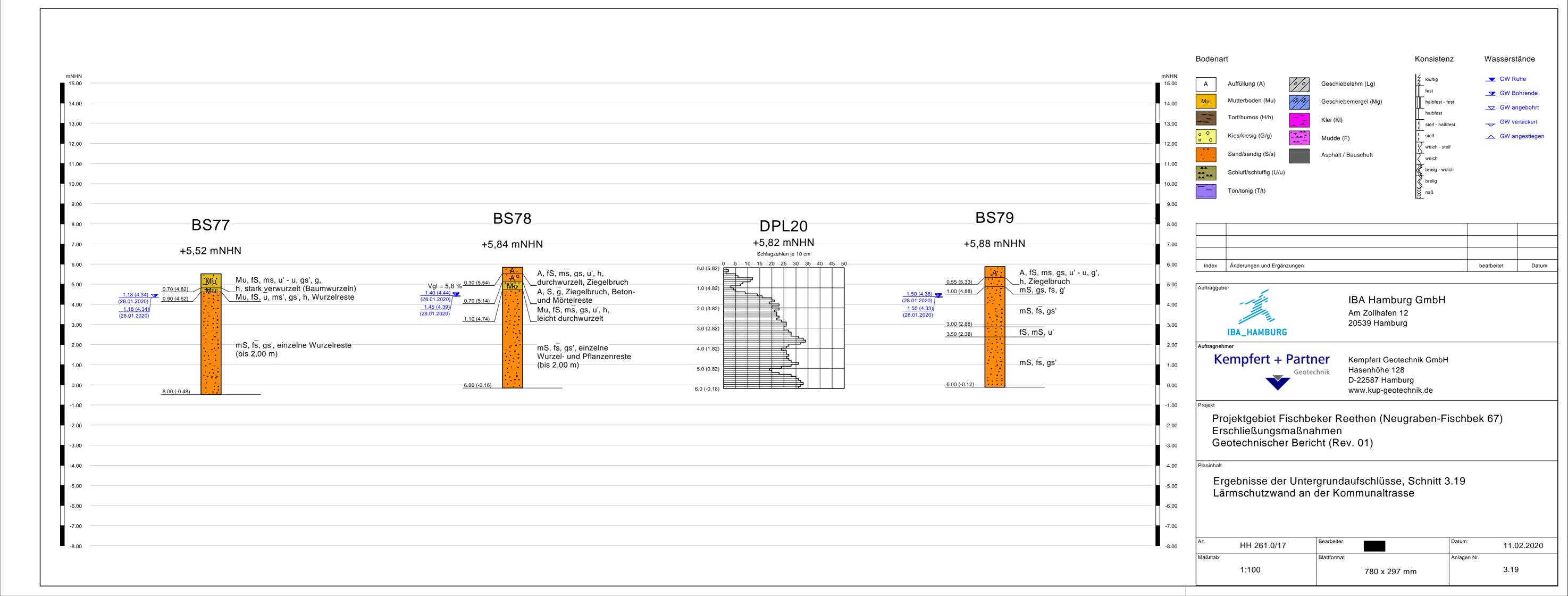


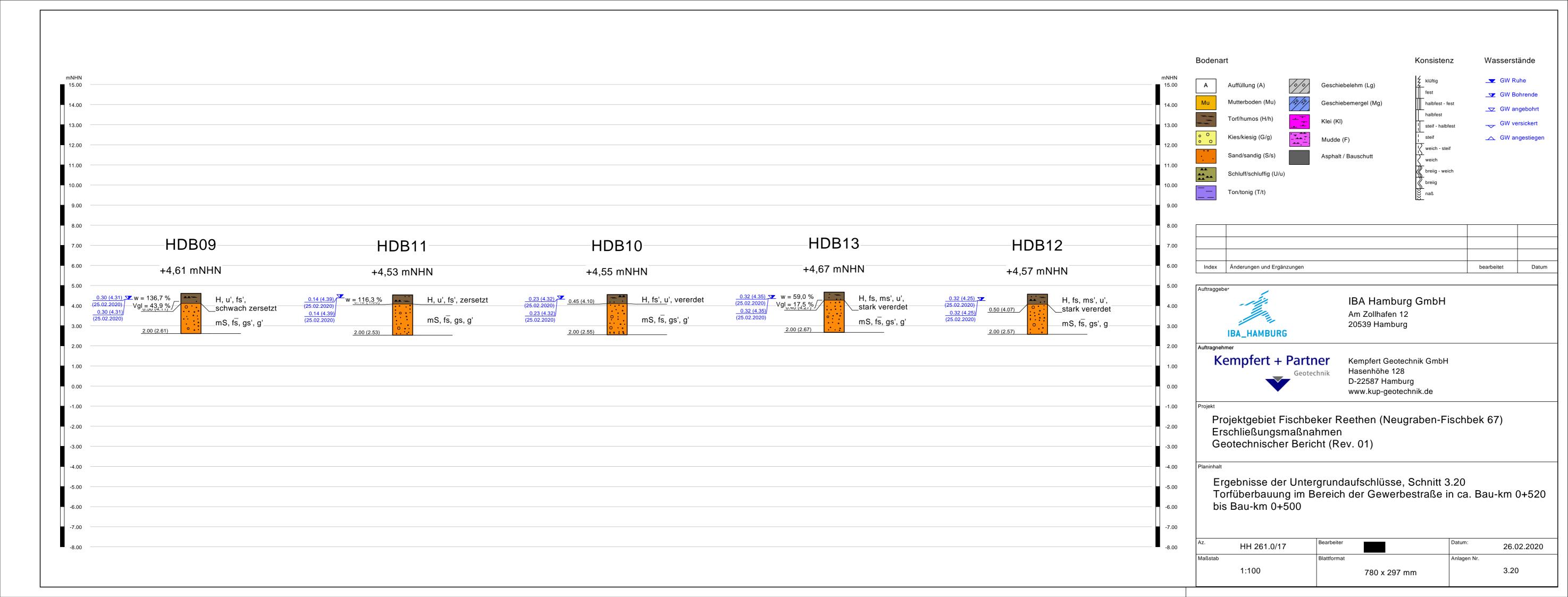






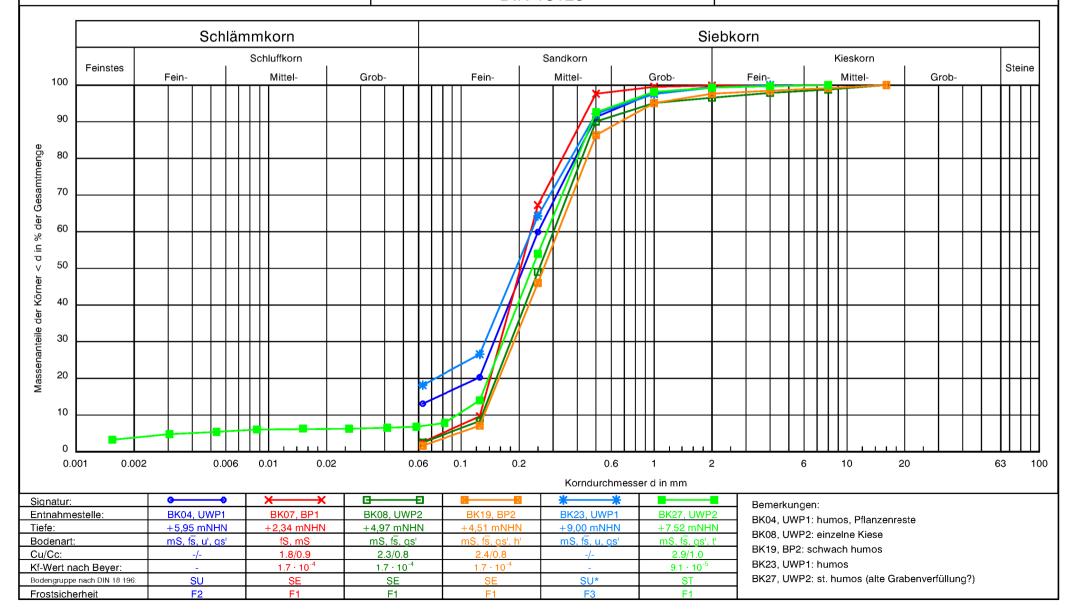






Ergebnisse der bodenmechanischen Laborversuche

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)

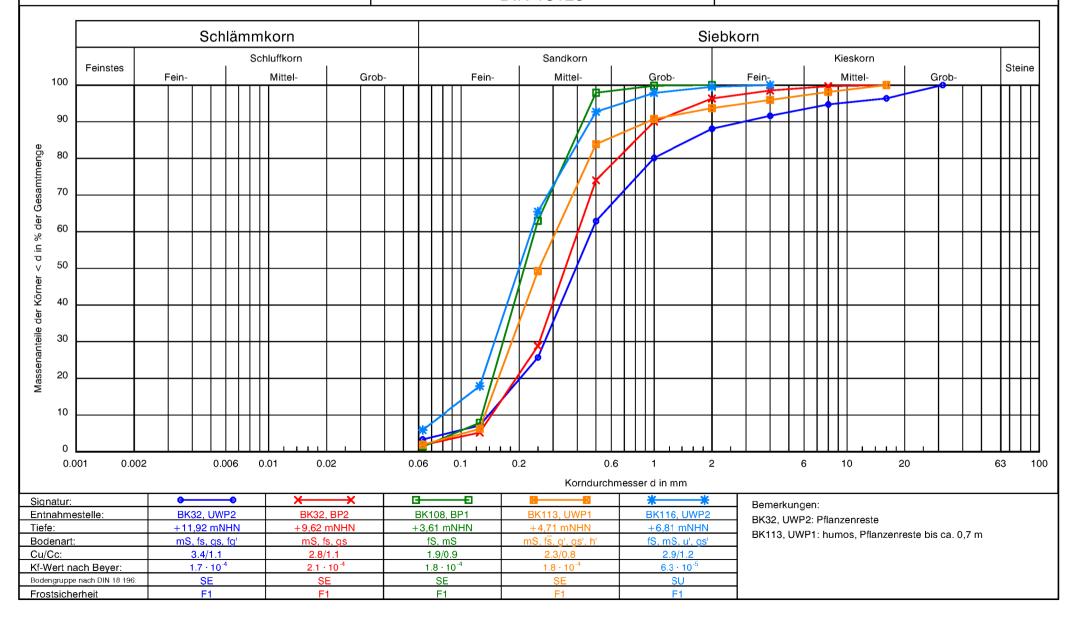
DIN 18123

Projekt Nr.: HH 261.0/17

Datum: 27.11.2017

Bearbeiter:

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)

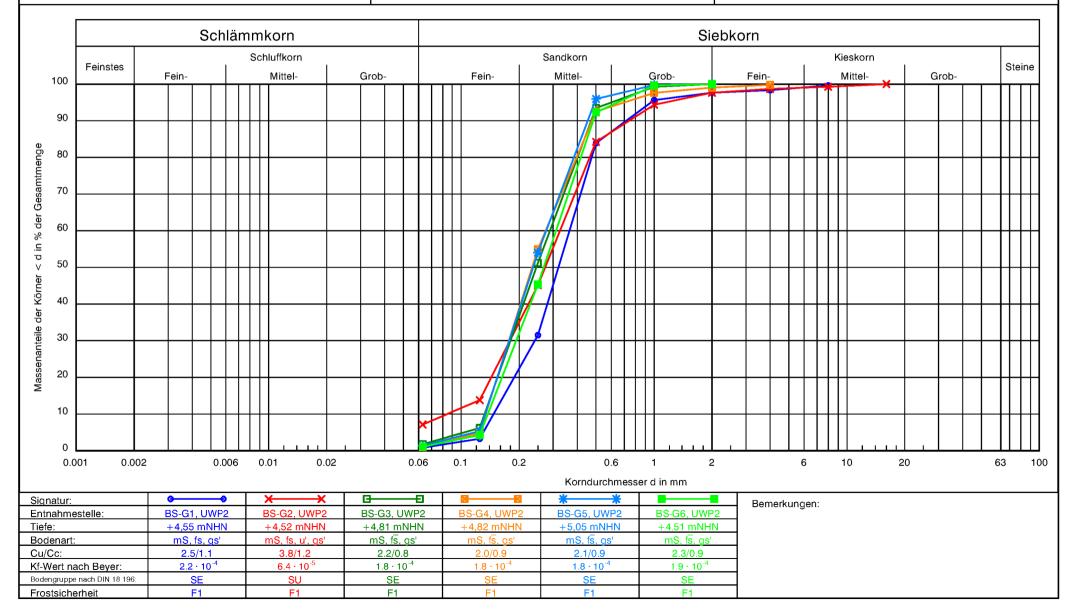
DIN 18123

Projekt Nr.: HH 261.0/17

Datum: 27.11.2017

Bearbeiter:

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)

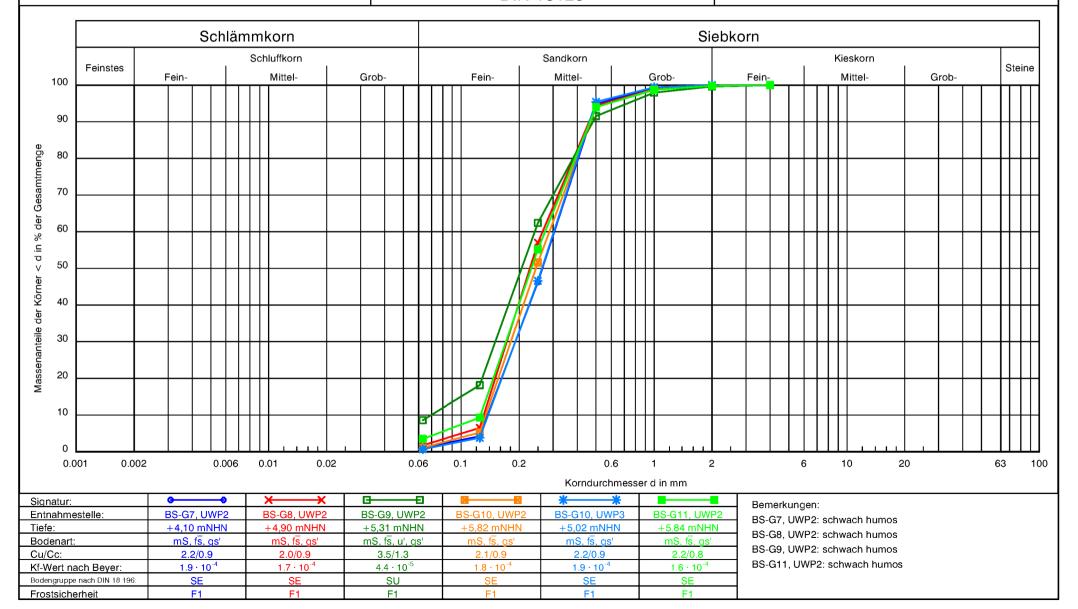
DIN 18123

Projekt Nr.: HH 261.0/17

Datum: 05.12.2017

Bearbeiter:

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)

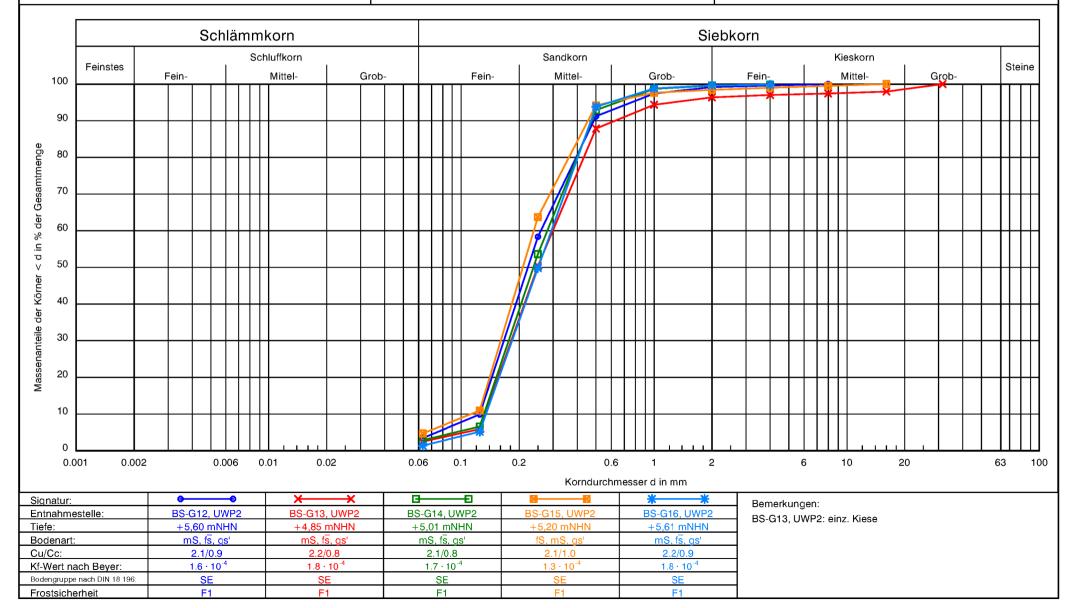
DIN 18123

Projekt Nr.: HH 261.0/17

Datum: 05.12.2017

Bearbeiter:

Korngrößenverteilung

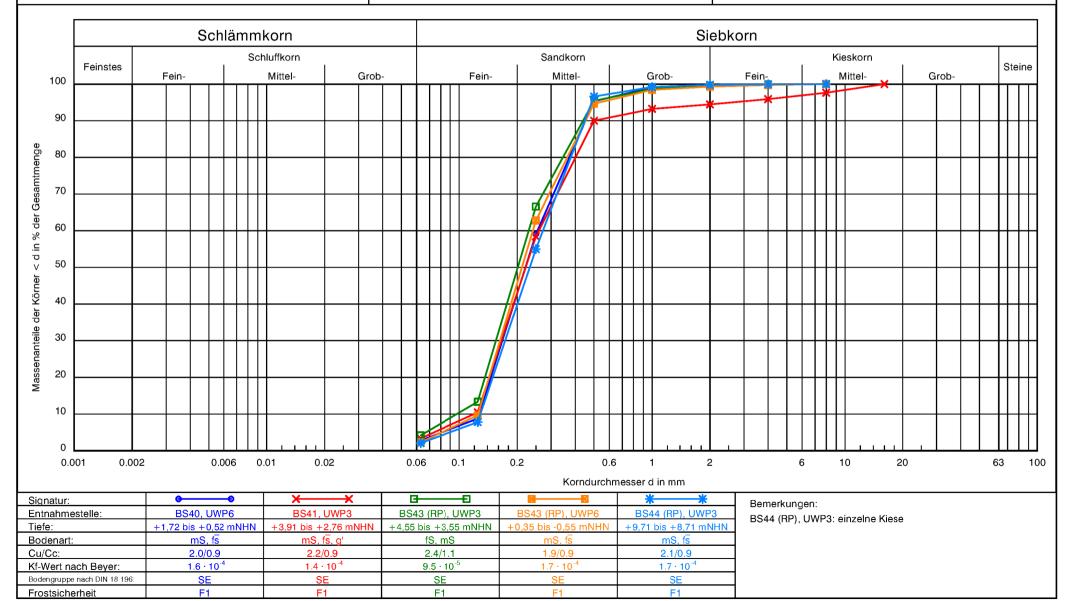

Fischbeker Reethen (Neugraben - Fischbek 67)

DIN 18123

Projekt Nr.: HH 261.0/17

Datum: 05.12.2017

Bearbeiter:

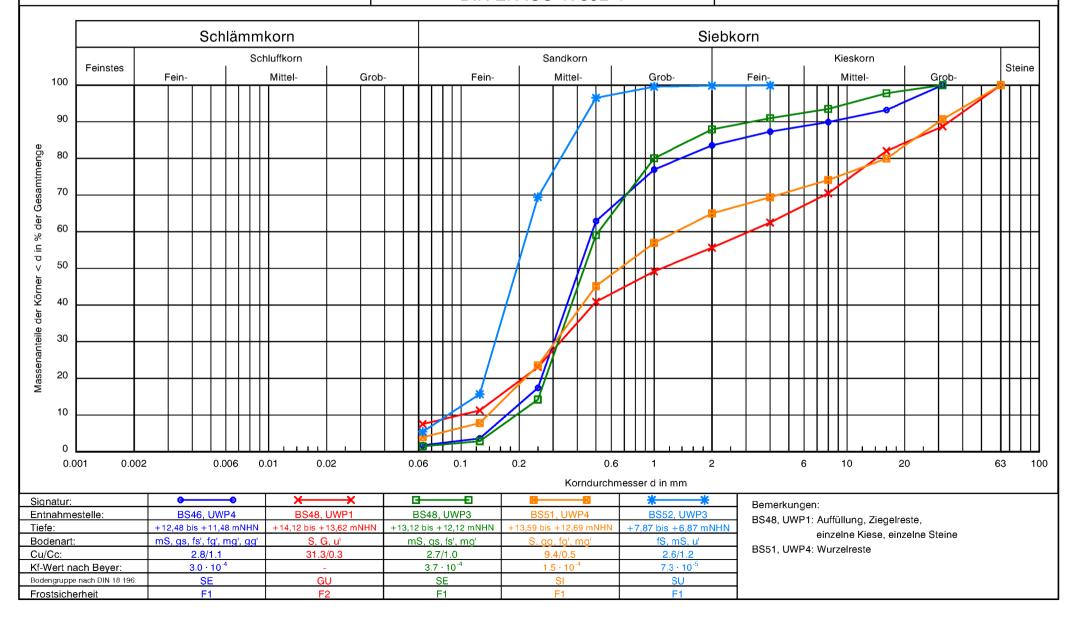

Korngrößenverteilung

Fischbeker Reethen (Neugraben - Fischbek 67)
DIN EN ISO 17892-4

Projekt Nr.: HH 261.0/17

Datum: 18.02.2020

Bearbeiter:


Korngrößenverteilung

Fischbeker Reethen (Neugraben - Fischbek 67)
DIN EN ISO 17892-4

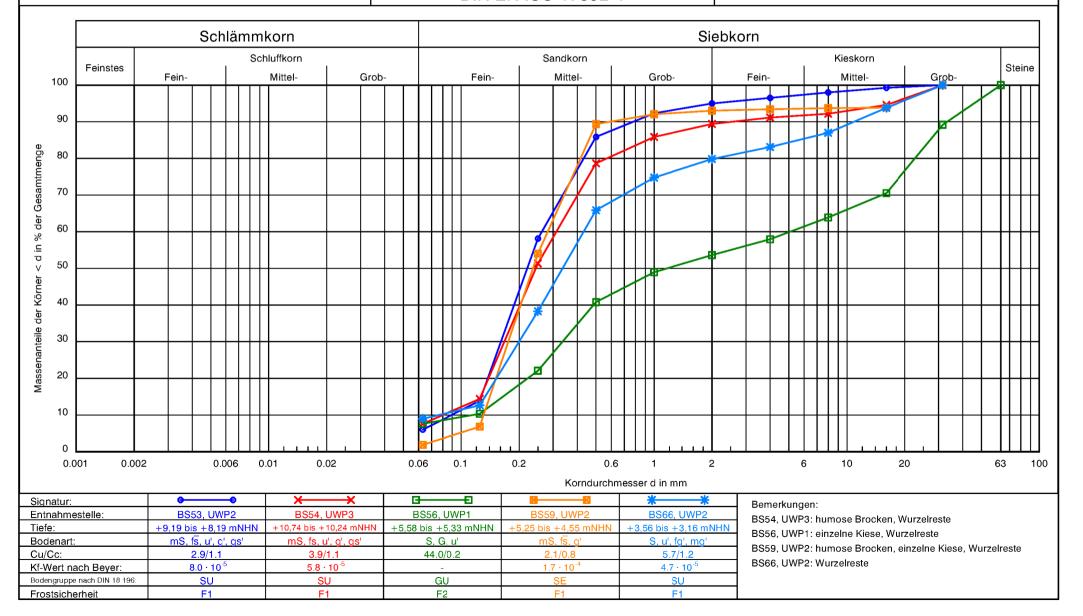
Projekt Nr.: HH 261.0/17

Datum: 18.02.2020

Bearbeiter:

Kempfert Geotechnik GmbH Hasenhöhe 128 22587 Hamburg www.kup-geotechnik.de

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)
DIN EN ISO 17892-4

Projekt Nr.: HH 261.0/17

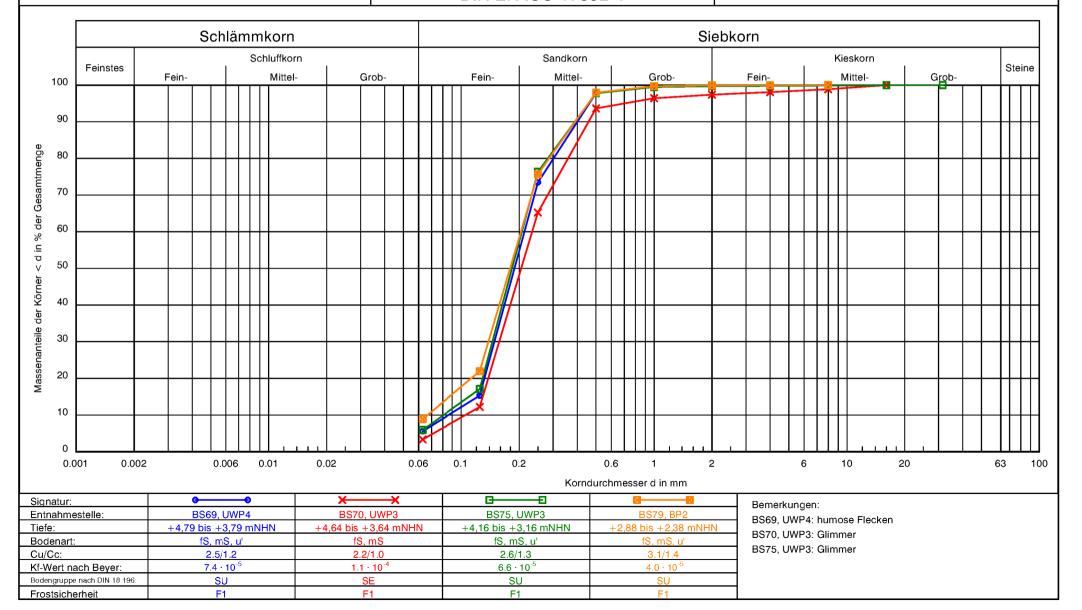
Datum: 18.02.2020

Bearbeiter:

Anlagen Nr.: 4.1

Kempfert Geotechnik GmbH Hasenhöhe 128 22587 Hamburg www.kup-geotechnik.de

Korngrößenverteilung


Fischbeker Reethen (Neugraben - Fischbek 67)
DIN EN ISO 17892-4

Projekt Nr.: HH 261.0/17

Datum: 18.02.2020

Bearbeiter:

Anlagen Nr.: 4.1

Zusammenstellung der kf-Werte

Sondierpunkt	Probennummer	Untersuchungstiefe	kf-Wert nach Beyer [m/s
BK07	BP1	+2,34 mNHN	1,7 · 10 ⁻⁴
BK08	UWP2	+4,97 mNHN	1,7 · 10 ⁻⁴
BK19	BP2	+4,51 mNHN	1,7 · 10 ⁻⁴
BK27	UWP2	+7,52 mNHN	9,1 · 10 ⁻⁵
BK32	UWP2	+11,92 mNHN	1,7 · 10 ⁻⁴
BK32	BP2	+9,62 mNHN	2,1 · 10 ⁻⁴
BK108	BP1	+3,61 mNHN	1,8 · 10 ⁻⁴
BK113	UWP1	+4,71 mNHN	1,8 · 10 ⁻⁴
BK116	UWP2	+6,81 mNHN	6,3 · 10 ⁻⁵
BS-G1	UWP2	+4,55 mNHN	2,2 · 10 ⁻⁴
BS-G2	UWP2	+4,52 mNHN	6,4 · 10 ⁻⁵
BS-G3	UWP2	+4,81 mNHN	1,8 · 10 ⁻⁴
BS-G4	UWP2	+4,82 mNHN	1,8 · 10 ⁻⁴
BS-G5	UWP2	+5,05 mNHN	1,8 · 10 ⁻⁴
BS-G6	UWP2	+4,51 mNHN	1,9 · 10 ⁻⁴
BS-G7	UWP2	+4,10 mNHN	1,9 · 10 ⁻⁴
BS-G8	UWP2	+4,90 mNHN	1,7 · 10 ⁻⁴
BS-G9	UWP2	+5,31 mNHN	4,4 · 10 ⁻⁵
BS-G10	UWP2	+5,82 mNHN	1,8 · 10 ⁻⁴
BS-G10	UWP3	+5,02 mNHN	1,9 · 10 ⁻⁴
BS-G11	UWP2	+5,84 mNHN	1,6 · 10 ⁻⁴
BS-G12	UWP2	+5,60 mNHN	1,6 · 10 ⁻⁴
BS-G13	UWP2	+4,85 mNHN	1,8 · 10 ⁻⁴
BS-G14	UWP2	+5,01 mNHN	1,7 · 10 ⁻⁴
BS-G15	UWP2	+5,20 mNHN	1,3 · 10 ⁻⁴
BS-G16	UWP2	+5,61 mNHN	1,8 · 10 ⁻⁴
BS40	UWP6	+1,72 bis +0,52 mNHN	1,6 · 10 ⁻⁴
BS41	UWP3	+3,91 bis +2,76 mNHN	1,4 · 10 ⁻⁴
BS43 (RP)	UWP3	+4,55 bis +3,55 mNHN	9,5 · 10 ⁻⁵
BS43 (RP)	UWP6	+0,35 bis -0,55 mNHN	1,7 · 10 ⁻⁴
BS44 (RP)	UWP3	+9,71 bis +8,71 mNHN	1,7 · 10 ⁻⁴
BS46	UWP4	+12,48 bis +11,48 mNHN	3,0 · 10 ⁻⁴
BS48	UWP1	+14,12 bis +13,62 mNHN	-
BS48	UWP3	+13,12 bis +12,12 mNHN	3,7 · 10 ⁻⁴
BS51	UWP4	+13,59 bis +12,69 mNHN	1,5 · 10 ⁻⁴
BS52	UWP3	+7,87 bis +6,87 mNHN	7,3 · 10 ⁻⁵
BS53	UWP2	+9,19 bis +8,19 mNHN	8,0 · 10 ⁻⁵
BS54	UWP3	+10,74 bis +10,24 mNHN	5,8 · 10 ⁻⁵
BS56	UWP1	+5,58 bis +5,33 mNHN	-
BS59	UWP2	+5,25 bis +4,55 mNHN	1,7 · 10 ⁻⁴
BS66	UWP2	+3,56 bis +3,16 mNHN	4,7 · 10 ⁻⁵
BS69	UWP4	+4,79 bis +3,79 mNHN	7,4 · 10 ⁻⁵
BS70	UWP3	+4,64 bis +3,64 mNHN	1,1 · 10 ⁻⁴
BS75	UWP3	+4,16 bis +3,16 mNHN	6,6 · 10 ⁻⁵
BS79	BP2	+2,88 bis +2,38 mNHN	4,0 · 10 ⁻⁵

Anlage 4.2 Seite 1 / 1

Anlage 5

Ergebnisse der chemischen Analysen

Az.: HH 261.0/17

Anlage 5.1

LAGA-Analytik, Boden

Az.: HH 261.0/17

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2017P518563 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	25.10.2017
Projekt	BV Neugraben - Fischbek 67
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	HH 261.0/17
Verpackung	Schraubdeckelglas
Probenmenge	ca. 500-700 g
Auftragsnummer	17511900
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn / -ende	25.10.2017 - 13.11.2017
Methoden	siehe letzte Seite
Unteraufträge	
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinnebera, 13.11.2017

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2017P518563

Sitz der Gesellschaft: Hamburg Handelsregister: Hamburg HRB 42774

Prüfbericht-Nr.: 2017P518563 / 1 BV Neugraben - Fischbek 67

Zuordnung gem. LAGA-Boden (M20, Fassung 2004) / Bodenart "Sand"

Auftrag		175119	000	17511	900	17511	900	175119	900
Probe-Nr.		001		002		003		004	
Material		Boden Boden		en	Boden		Bode	n	
Probenbezeichnung		MP 1		MP 2		MP 3		MP 5	
Probemenge		ca. 500-7	'00 a	ca. 500-	700 a	ca. 500-	700 a	ca. 500-7	700 a
Probeneingang		25.10.20		25.10.2		25.10.2		25.10.20	
	Einheit	20.10.20	517	20.10.2	.017	20.10.2	-017	20.10.2	017
Analysenergebnisse Trackerrückstand		04.2		07.5		00.3		00.7	
Trockenrückstand EOX	Masse-%	94,2	Z0	97,5 <1,0	 Z0	90,3	 Z0	90,7	Z0
Kohlenwasserstoffe	mg/kg TM	<100	Z0	<100	Z0	<100	Z0 Z0	<100	
mobiler Anteil bis C22	mg/kg TM mg/kg TM	<50	Z0	<50	Z0	<50	Z0 Z0	<50	Z0 Z0
		<1,0	Z0	<1,0	Z0	<1.0	Z0 Z0	<1,0	Z0 Z0
Cyanid ges. Summe BTEX	mg/kg TM mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0 Z0	<1,0	Z0
Summe LHKW	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0 Z0	<1,0	Z0 Z0
Summe PAK (EPA)	mg/kg TM	0,174	Z0	n.n.	Z0	n.n.	Z0 Z0	0,445	Z0 Z0
Benzo(a)pyren	mg/kg TM	<0,050	Z0	<0,050	Z0	<0,050	Z0	<0,050	Z0
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z0	n.n.	Z0	n.n.	Z0	n.n.	Z0
Aufschluss mit Königswasser	mg/kg mi	11.11.		11.11.		11.11.		11.11.	
Arsen	mg/kg TM	1,9	Z0	<1,0	Z0	<1,0	Z0	1,5	Z0
Blei	mg/kg TM	13	Z0	4,1	Z0	4,5	Z0	7,7	Z0
Cadmium	mg/kg TM	0,16	Z0	<0,10	Z0	<0,10	Z0	0,13	Z0
Chrom ges.	mg/kg TM	2,5	Z0	1,7	Z0	2,2	Z0	6,7	Z0
Kupfer	mg/kg TM	3,6	Z0	<1,0	Z0	1,0	Z0	12	Z0
Nickel	mg/kg TM	1,1	Z0	1,4	Z0	1,5	Z0	14	Z0
Quecksilber	mg/kg TM	<0,10	Z0	<0,10	Z0	<0,10	Z0	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z0	<0,30	Z0	<0,30	Z0	<0,30	Z0
Zink	mg/kg TM	13	Z0	7,4	Z0	8,2	Z0	23	Z0
TOC	Masse-% TM	2,0	Z2	0,52 Z	(Z0)	0,16	Z0	0,70 Z	1(Z0)
Eluat									
pH-Wert		5,8	Z2	6,1	Z1.2	6,0	Z1.2	7,6	Z0
Leitfähigkeit	μS/cm	23	Z0	8,0	Z0	12	Z0	71	Z0
Chlorid	mg/L	<0,60	Z0	<0,60	Z0	<0,60	Z0	<0,60	Z0
Sulfat	mg/L	1,1	Z0	<1,0	Z0	2,1	Z0	3,3	Z0
Cyanid ges.	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Phenolindex	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Arsen	μg/L	2,3	Z0	<0,50	Z0	<0,50	Z0	2,2	Z0
Blei	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Cadmium	μg/L	<0,30	Z0	<0,30	Z0	<0,30	Z0	<0,30	Z0
Chrom ges.	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kupfer	μg/L	3,1	Z0	<1,0	Z0	<1,0	Z0	2,2	Z0
Nickel	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Quecksilber	μg/L	<0,20	Z0	<0,20	Z0	<0,20	Z0	<0,20	Z0
Zink	μg/L	11	Z0	<10	Z0	<10	Z0	<10	Z0

Prüfbericht-Nr.: 2017P518563 / 1 BV Neugraben - Fischbek 67

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Masse-%	DIN ISO 11465ª
EOX	1,0	mg/kg TM	US-Extr. Cyclo/Hex/Acet; DIN 38414 (S17)a
Kohlenwasserstoffe	100	mg/kg TM	DIN EN 14039 i.V.m. LAGA KW/04ª
mobiler Anteil bis C22	50	mg/kg TM	DIN ISO 16703 i.V.m. LAGA KW/04ª
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380 ^a
Summe BTEX	1,0	mg/kg TM	DIN ISO 22155ª
Summe LHKW	1,0	mg/kg TM	DIN ISO 22155ª
Summe PAK (EPA)	1,0	mg/kg TM	DIN ISO 18287 ^a
Benzo(a)pyren	0,050	mg/kg TM	DIN ISO 18287ª
PCB Summe 6 Kongenere		mg/kg TM	DIN ISO 10382ª
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN 16171 ^a
Blei	1,0	mg/kg TM	DIN EN 16171 ^a
Cadmium	0,10	mg/kg TM	DIN EN 16171 ^a
Chrom ges.	1,0	mg/kg TM	DIN EN 16171 ^a
Kupfer	1,0	mg/kg TM	DIN EN 16171 ^a
Nickel	1,0	mg/kg TM	DIN EN 16171 ^a
Quecksilber	0,10	mg/kg TM	DIN EN 16171 ^a
Thallium	0,30	mg/kg TM	DIN EN 16171 ^a
Zink	1,0	mg/kg TM	DIN EN 16171 ^a
тос	0,050	Masse-% TM	DIN EN 15936ª
Eluat			DIN EN 12457-4 ^a
pH-Wert			DIN EN ISO 10523ª
Leitfähigkeit		μS/cm	DIN EN 27888 (C8) ^a
Chlorid	0,60	mg/L	DIN EN ISO 10304-1 D20 ^a
Sulfat	1,0	mg/L	DIN EN ISO 10304-1 D20 ^a
Cyanid ges.	5,0	μg/L	DIN EN ISO 14403ª
Phenolindex	5,0	μg/L	DIN EN ISO 14402 (H37) ^a
Arsen	0,50	μg/L	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,30	μg/L	DIN EN ISO 17294-2 (E29)ª
Chrom ges.	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,20	μg/L	DIN EN ISO 17294-2 (E29) ^a
Zink	10	μg/L	DIN EN ISO 17294-2 (E29) ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2017P518534 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	03.11.2017
Projekt	BV Neugraben Fischbek 67
Material	Boden
Kennzeichnung	MP 6
Auftrag	HH 261.0/17
Verpackung	Schraubdeckelglas
Probenmenge	ca. 450 g
Auftragsnummer	17512277
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn / -ende	03.11.2017 - 13.11.2017
Methoden	siehe letzte Seite
Unteraufträge	
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 13.11.2017

(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2017P518534 / 1

Sitz der Gesellschaft: Hamburg Handelsregister: Hambura HRB 42774

Prüfbericht-Nr.: 2017P518534 / 1 BV Neugraben Fischbek 67

Zuordnung gem. LAGA-Boden (M20, Fassung 2004) / Bodenart "Lehm / Schluff"

Auftrag		17512	277
Probe-Nr.		001	
Material		Bode	n
Probenbezeichnung		MP 6	
Probemenge		ca. 45	0 g
Probeneingang		03.11.2	
Analysenergebnisse	Einheit		
Trockenrückstand	Masse-%	33,5	
EOX	mg/kg TM	<1,0	Z0
Kohlenwasserstoffe	mg/kg TM	<100	Z0
mobiler Anteil bis C22	mg/kg TM	<50	Z0
Cyanid ges.	mg/kg TM	<1,0	Z 0
Summe BTEX	mg/kg TM	<1,0	Z0
Summe LHKW	mg/kg TM	<1,0	Z0
Summe PAK (EPA)	mg/kg TM	0,499	Z0
Benzo(a)pyren	mg/kg TM	<0,050	Z0
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z0
Aufschluss mit Königswasser			
Arsen	mg/kg TM	7,4	Z0
Blei	mg/kg TM	22	Z0
Cadmium	mg/kg TM	0,39	Z0
Chrom ges.	mg/kg TM	7,5	Z0
Kupfer	mg/kg TM	8,9	Z0
Nickel	mg/kg TM	3,3	Z0
Quecksilber	mg/kg TM	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z0
Zink	mg/kg TM	27	Z0
TOC	Masse-% TM	27	>Z2
Eluat			
pH-Wert		6,5	Z0
Leitfähigkeit	μS/cm	102	Z0
Chlorid	mg/L	2,3	Z0
Sulfat	mg/L	21	Z1.2
Cyanid ges.	μg/L	<5,0	Z0
Phenolindex	μg/L	<5,0	Z0
Arsen	μg/L	9,2	Z0
Blei	μg/L	<1,0	Z0
Cadmium	μg/L	<0,30	Z0
Chrom ges.	μg/L	<1,0	Z0
Kupfer	μg/L	1,7	Z0
Nickel	μg/L	1,3	Z0
Quecksilber	μg/L	<0,20	Z0
Zink	μg/L	<10	Z0

Prüfbericht-Nr.: 2017P518534 / 1 BV Neugraben Fischbek 67

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Masse-%	DIN ISO 11465ª
EOX	1,0	mg/kg TM	US-Extr. Cyclo/Hex/Acet; DIN 38414 (S17)a
Kohlenwasserstoffe	100	mg/kg TM	DIN EN 14039 i.V.m. LAGA KW/04ª
mobiler Anteil bis C22	50	mg/kg TM	DIN ISO 16703 i.V.m. LAGA KW/04ª
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380ª
Summe BTEX	1,0	mg/kg TM	DIN ISO 22155ª
Summe LHKW	1,0	mg/kg TM	DIN ISO 22155ª
Summe PAK (EPA)	1,0	mg/kg TM	DIN ISO 18287ª
Benzo(a)pyren	0,050	mg/kg TM	DIN ISO 18287ª
PCB Summe 6 Kongenere		mg/kg TM	DIN ISO 10382ª
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN 16171 ^a
Blei	1,0	mg/kg TM	DIN EN 16171 ^a
Cadmium	0,10	mg/kg TM	DIN EN 16171 ^a
Chrom ges.	1,0	mg/kg TM	DIN EN 16171 ^a
Kupfer	1,0	mg/kg TM	DIN EN 16171 ^a
Nickel	1,0	mg/kg TM	DIN EN 16171 ^a
Quecksilber	0,10	mg/kg TM	DIN EN 16171 ^a
Thallium	0,30	mg/kg TM	DIN EN 16171 ^a
Zink	1,0	mg/kg TM	DIN EN 16171 ^a
тос	0,050	Masse-% TM	DIN EN 15936 ^a
Eluat			DIN EN 12457-4 ^a
pH-Wert			DIN EN ISO 10523ª
Leitfähigkeit		μS/cm	DIN EN 27888 (C8) ^a
Chlorid	0,60	mg/L	DIN EN ISO 10304-1 D20 ^a
Sulfat	1,0	mg/L	DIN EN ISO 10304-1 D20 ^a
Cyanid ges.	5,0	μg/L	DIN EN ISO 14403ª
Phenolindex	5,0	μg/L	DIN EN ISO 14402 (H37) ^a
Arsen	0,50	μg/L	DIN EN ISO 17294-2 (E29) ^a
Blei	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,30	μg/L	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Kupfer	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Nickel	1,0	μg/L	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,20	μg/L	DIN EN ISO 17294-2 (E29) ^a
Zink	10	μg/L	DIN EN ISO 17294-2 (E29) ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Straße 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

ISO 14001 ISO 45001 zertifiziert

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2020P509919 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	03.04.2020
Projekt	BV Neugraben-Fischbek 67
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	HH 261.0/17
Verpackung	Schraubdeckelglas
Probenmenge	ca. 400-600 g
Auftragsnummer	20505894
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn / -ende	03.04.2020 - 16.04.2020
Methoden	siehe letzte Seite
Unteraufträge	
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 16.04,2020

Projektbearbeitung / Kundenbetreuung

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Es wird keine Verantwortung für die Richtigkeit der Probenahme übernommen, wenn die Proben nicht durch die GBA oder in ihrem Auftrag genommen wurden. In diesem Fall beziehen sich die Ergebnisse auf die Probe wie erhalten. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfaltigt werden. Entscheidungsregeln der GBA sind in den AGBs einzusehen.

Seite 1 von 6 zu Prüfbericht-Nr.: 2020P509919 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15, 25421 Pinneberg Telefon -

E-Mail pinneberg@gba-group.de www.gba-group.com

Sitz der Gesellschaft: Hamburg Handelsregister: Hamburg HRB 42774

Zuordnungswerte gem. LAGA-Boden (M20, Fassung 2004)

Zuordnungswerte gem. LA	GA-Boden (IVI				<u> </u>				- 1
Auftrag		205058	394	205058	94	2050589	94	205058	94
Probe-Nr. Material	1	001 Bode	n	002 Boder	,	003 Boden		004 Bodei	
Probenbezeichnung		MP 7		MP 8	_	MP 9		MP 10	
Probemenge	1	ca. 400-6		ca. 400-6	_	ca. 400-60	00 a	ca. 400-6	
Probeneingang		03.04.20		03.04.20		03.04.20		03.04.20	
Zuordnung gemäß		Sand	l	Sand		Sand		Sand	
Trockenrückstand	Masse-%	90,0		92,6		89,8		95,1	
EOX	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kohlenwasserstoffe	mg/kg TM	<100	Z0	<100	Z 0	<100	Z0	<100	Z0
mobiler Anteil bis C22	mg/kg TM	<50	Z0	<50	Z 0	<50	Z0	<50	Z0
Cyanid ges.	mg/kg TM	<1,0	Z0	<1,0	Z 0	<1,0	Z 0	<1,0	Z0
Summe BTEX	mg/kg TM	<1,0	Z0	<1,0	Z 0	<1,0	Z0	<1,0	Z0
Summe LHKW	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z 0	<1,0	Z0
Summe PAK (EPA)	mg/kg TM	0,512	Z0	n.n.	Z0	1,40	Z0	n.n.	Z0
Benzo(a)pyren	mg/kg TM	0,052	Z0	<0,050	Z0	0,12	Z0	<0,050	Z0
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z0	n.n.	Z0	0,00760	Z0	n.n.	Z0
Aufschluss mit Königswasser									
Arsen	mg/kg TM	1,9	Z0	<1,0	Z0	4,8	Z0	<1,0	Z 0
Blei	mg/kg TM	15	Z0	1,0	Z0	32	Z0	1,8	Z0
Cadmium	mg/kg TM	0,18	Z0	<0,10	Z 0	0,31	Z0	<0,10	Z0
Chrom ges.	mg/kg TM	3,9	Z0	1,7	Z 0	13	Z0	2,2	Z 0
Kupfer	mg/kg TM	13	Z0	8,7	Z0	19	Z0	7,0	Z0
Nickel	mg/kg TM	1,0	Z0	1,0	Z0	6,7	Z 0	1,6	Z0
Quecksilber	mg/kg TM	<0,10	Z0	<0,10	Z0	<0,10	Z0	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z0	<0,30	Z0	<0,30	Z 0	<0,30	Z0
Zink	mg/kg TM	14	Z0	5,4	Z0	68	Z 1	9,8	Z0
тос	Masse-% TM	3,3	Z2	<0,050	Z 0	1,9	Z2	0,092	Z0
Eluat									
pH-Wert		7,1	Z0	7,3	Z0	7,3	Z0	7,7	Z0
Leitfähigkeit	μS/cm	28	Z0	6,7	Z 0	89	Z0	12	Z0
Chlorid	mg/L	<0,60	Z0	<0,60	Z 0	<0,60	Z0	<0,60	Z0
Sulfat	mg/L	<1,0	Z0	<1,0	Z 0	4,3	Z0	2,2	Z0
Cyanid ges.	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Phenolindex	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Arsen	μg/L	1,2	Z0	<0,50	Z0	1,4	Z 0	<0,50	Z0
Blei	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Cadmium	μg/L	<0,30	Z0	<0,30	Z 0	<0,30	Z0	<0,30	Z0
Chrom ges.	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kupfer	μg/L	2,0	Z0	<1,0	Z0	1,9	Z0	<1,0	Z0
Nickel	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Quecksilber	μg/L	<0,20	Z0	<0,20	Z0	<0,20	Z0	<0,20	Z0
Zink	μg/L	20	Z0	<10	Z0	<10	Z0	<10	Z0

BG = Bestimmungsgrenze MU = Messunsicherheit n.a. = nicht auswertbar n.b. = nicht bestimmbar n.n. = nicht nachweisbar

Auftrag		205058	94	205058	94	205058	894	205058	94
Probe-Nr.		005	0 -	006	0 1	007	,,,,	008	
Material		Bodei	n	Bodei	n	Bode	n	Bode	n
Probenbezeichnung		MP 1		MP 12		MP 1		MP 14	
Probemenge		ca. 400-6	00 g	ca. 400-6	00 g	ca. 400-6	600 g	ca. 400-6	00 g
Probeneingang		03.04.20		03.04.20		03.04.2	_	03.04.20)20
Zuordnung gemäß		Sand		Sand		Sand	t	Sand	
Trockenrückstand	Masse-%	96,7		89,6		87,5		95,1	
EOX	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kohlenwasserstoffe	mg/kg TM	179	Z1	<100	Z0	<100	Z0	<100	Z0
mobiler Anteil bis C22	mg/kg TM	<50	Z0	<50	Z0	<50	Z0	<50	Z0
Cyanid ges.	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z 0
Summe BTEX	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z 0	<1,0	Z0
Summe LHKW	mg/kg TM	<1,0	Z 0	<1,0	Z0	<1,0	Z 0	<1,0	Z0
Summe PAK (EPA)	mg/kg TM	n.n.	Z 0	n.n.	Z0	1,07	Z 0	n.n.	Z0
Benzo(a)pyren	mg/kg TM	<0,050	Z 0	<0,050	Z0	0,079	Z 0	<0,050	Z0
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z 0	n.n.	Z0	n.n.	Z 0	n.n.	Z0
Aufschluss mit Königswasser									
Arsen	mg/kg TM	2,1	Z0	4,4	Z0	1,9	Z0	1,7	Z0
Blei	mg/kg TM	9,1	Z0	3,7	Z0	12	Z0	5,5	Z0
Cadmium	mg/kg TM	<0,10	Z0	<0,10	Z0	0,12	Z 0	<0,10	Z0
Chrom ges.	mg/kg TM	3,7	Z0	3,2	Z0	3,7	Z0	3,5	Z0
Kupfer	mg/kg TM	11	Z0	13	Z0	16	Z0	9,8	Z0
Nickel	mg/kg TM	1,8	Z0	3,7	Z0	2,6	Z0	2,1	Z 0
Quecksilber	mg/kg TM	<0,10	Z0	<0,10	Z0	<0,10	Z0	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z 0	<0,30	Z0	<0,30	Z 0	<0,30	Z0
Zink	mg/kg TM	29	Z 0	16	Z0	28	Z 0	10	Z0
тос	Masse-% TM	1,3	Z 1	0,26	Z0	3,0	Z2	0,27	Z0
Eluat									
pH-Wert		7,2	Z 0	7,4	Z0	7,0	Z 0	7,3	Z0
Leitfähigkeit	μS/cm	37	Z0	13	Z0	47	Z 0	21	Z 0
Chlorid	mg/L	0,85	Z0	<0,60	Z0	<0,60	Z 0	2,4	Z0
Sulfat	mg/L	3,4	Z0	<1,0	Z0	1,8	Z 0	2,1	Z 0
Cyanid ges.	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z 0	<5,0	Z 0
Phenolindex	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z 0	<5,0	Z 0
Arsen	μg/L	<0,50	Z0	<0,50	Z0	0,91	Z0	<0,50	Z0
Blei	μg/L	1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Cadmium	μg/L	<0,30	Z0	<0,30	Z 0	<0,30	Z 0	<0,30	Z 0
Chrom ges.	μg/L	<1,0	Z 0	<1,0	Z0	2,9	Z0	<1,0	Z0
Kupfer	μg/L	3,5	Z0	<1,0	Z0	4,1	Z0	2,3	Z0
Nickel	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z 0	<1,0	Z0
Quecksilber	μg/L	<0,20	Z 0	<0,20	Z0	<0,20	Z 0	<0,20	Z0
Zink	μg/L	11	Z 0	<10	Z0	13	Z0	<10	Z0
ı .	1								

Auftrag		20505	894	205058	394	205058	394	205058	394	205058	394
Probe-Nr.		009		010		011		012		013	
Material		Bode	en	Bode	n	Bode	n	Bode	n	Bode	
Probenbezeichnung		MP	15	MP 1	6	MP 1	7	MP 1	8	MP 1	9
Probemenge		ca. 400-		ca. 400-6		ca. 400-6		ca. 400-6		ca. 400-6	
Probeneingang		03.04.2		03.04.2		03.04.20		03.04.2		03.04.2	
Zuordnung gemäß		San		Sand		Sand		Sand		Sand	1
Trockenrückstand	Masse-%	89,1		92,1		95,4		75,4		71,8	
EOX	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kohlenwasserstoffe	mg/kg TM	<100	Z0	<100	Z0	<100	Z0	<100	Z0	<100	Z0
mobiler Anteil bis C22	mg/kg TM	<50	Z0	<50	Z0	<50	Z0	<50	Z0	<50	Z0
Cyanid ges.	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Summe BTEX	mg/kg TM	<1,0	Z 0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Summe LHKW	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Summe PAK (EPA)	mg/kg TM	n.n.	Z0	n.n.	Z0	n.n.	Z0	23,7	Z2	2,31	Z 0
Benzo(a)pyren	mg/kg TM	<0,050	Z0	<0,050	Z0	<0,050	Z0	1,3	Z2	0,24	Z 0
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z0	n.n.	Z0	n.n.	Z0	n.n.	Z0	n.n.	Z 0
Aufschluss mit Königswasser											
Arsen	mg/kg TM	2,1	Z 0	<1,0	Z 0	1,4	Z0	2,0	Z0	6,5	Z0
Blei	mg/kg TM	3,2	Z 0	2,1	Z0	3,4	Z0	11	Z0	23	Z0
Cadmium	mg/kg TM	<0,10	Z0	<0,10	Z0	<0,10	Z0	0,15	Z0	0,37	Z0
Chrom ges.	mg/kg TM	6,8	Z0	2,0	Z0	3,9	Z0	5,8	Z0	9,1	Z0
Kupfer	mg/kg TM	17	Z0	6,2	Z0	12	Z0	18	Z0	14	Z0
Nickel	mg/kg TM	7,7	Z0	<1,0	Z0	4,2	Z0	3,1	Z0	4,6	Z0
Quecksilber	mg/kg TM	<0,10	Z 0	<0,10	Z0	<0,10	Z0	<0,10	Z0	<0,10	Z0
Thallium	mg/kg TM	<0,30	Z 0	<0,30	Z0	<0,30	Z0	<0,30	Z0	<0,30	Z0
Zink	mg/kg TM	14	Z0	4,6	Z0	14	Z0	34	Z0	31	Z0
TOC	Masse-% TM	0,76	Z1 (Z0)	0,29	Z0	0,052	Z0	2,8	Z2	8,0	>Z2
Eluat											
pH-Wert		7,0	Z 0	7,7	Z0	7,9	Z0	7,4	Z0	7,2	Z0
Leitfähigkeit	μS/cm	89	Z0	50	Z0	33	Z0	205	Z0	131	Z0
Chlorid	mg/L	<0,60	Z0	<0,60	Z0	<0,60	Z0	7,6	Z0	6,7	Z0
Sulfat	mg/L	2,7	Z0	2,5	Z0	<1,0	Z0	28	Z1.2	9,5	Z0
Cyanid ges.	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Phenolindex	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0	<5,0	Z0
Arsen	μg/L	1,2	Z0	1,8	Z0	0,67	Z0	1,5	Z0	1,8	Z0
Blei	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Cadmium	μg/L	<0,30	Z 0	<0,30	Z0	<0,30	Z0	<0,30	Z0	<0,30	Z0
Chrom ges.	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0
Kupfer	μg/L	1,4	Z0	1,1	Z0	<1,0	Z0	2,1	Z0	4,0	Z0
Nickel	μg/L	<1,0	Z0	<1,0	Z0	<1,0	Z0	<1,0	Z0	2,2	Z0
Quecksilber	µg/L	<0,20	Z0	<0,20	Z0	<0,20	Z0	<0,20	Z0	<0,20	Z0
Zink	µg/L	<10	Z0	<10	Z0	<10	Z0	<10	Z0	15	Z0
-	F-3, -	ı `''	_5	I 10	_0		_5	L 10	_0	10	

Auftrag		205058	94	205058	94	205058	94	
Probe-Nr.		014		015		016		
Material		Boder	n	Bode	n	Bodei	า	
Probenbezeichnung		MP 20)	MP 2	1	MP 22	2	
Probemenge		ca. 400-6		ca. 400-6		ca. 400-6	_	
Probeneingang		03.04.20 Sand	$\overline{}$	03.04.20 Sand		03.04.20 Sand		
Zuordnung gemäß Trockenrückstand	Masse-%	84,6		82,1		86,9		
EOX	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	
Kohlenwasserstoffe	mg/kg TM	<100	Z0	<100	Z0	<100	Z0	
mobiler Anteil bis C22	mg/kg TM	<50	Z0	<50	Z0	<50	Z0	
Cyanid ges.	mg/kg TM	<1.0	Z0		Z0 Z0		Z0 Z0	
Summe BTEX	mg/kg TM	,		<1,0		<1,0		
		<1,0	Z0	<1,0	Z0	<1,0	Z0	
Summe LHKW	mg/kg TM	<1,0	Z0	<1,0	Z0	<1,0	Z0	
Summe PAK (EPA)	mg/kg TM	n.n.	Z0	2,06	Z0	n.n.	Z0	
Benzo(a)pyren	mg/kg TM	<0,050	Z0	0,17	Z0	<0,050	Z0	
PCB Summe 6 Kongenere	mg/kg TM	n.n.	Z0	n.n.	Z0	n.n.	Z0	
Aufschluss mit Königswasser								
Arsen	mg/kg TM	<1,0	Z0	3,3	Z0	<1,0	Z0	
Blei	mg/kg TM	1,3	Z0	13	Z0	1,4	Z0	
Cadmium	mg/kg TM	<0,10	Z0	0,21	Z0	<0,10	Z0	
Chrom ges.	mg/kg TM	2,1	Z0	4,2	Z0	2,2	Z0	
Kupfer	mg/kg TM	8,8	Z0	14	Z0	9,8	Z0	
Nickel	mg/kg TM	1,9	Z0	3,4	Z0	1,3	Z0	
Quecksilber	mg/kg TM	<0,10	Z 0	<0,10	Z 0	<0,10	Z0	
Thallium	mg/kg TM	<0,30	Z 0	<0,30	Z 0	<0,30	Z 0	
Zink	mg/kg TM	4,8	Z 0	26	Z 0	4,4	Z0	
TOC	Masse-% TM	0,068	Z0	3,1	Z2	<0,050	Z0	
Eluat								
pH-Wert		7,3	Z0	7,0	Z0	7,4	Z0	
Leitfähigkeit	μS/cm	33	Z0	189	Z0	32	Z0	
Chlorid	mg/L	1,4	Z0	6,9	Z0	2,5	Z0	
Sulfat	mg/L	7,8	Z0	16	Z0	4,4	Z0	
Cyanid ges.	μg/L	<5,0	Z0	<5,0	Z0	<5,0	Z0	
Phenolindex	μg/L	<5,0	Z 0	<5,0	Z 0	<5,0	Z 0	
Arsen	μg/L	<0,50	Z0	3,2	Z0	0,56	Z 0	
Blei	μg/L	<1,0	Z 0	1,4	Z 0	<1,0	Z 0	
Cadmium	μg/L	<0,30	Z 0	<0,30	Z 0	<0,30	Z0	
Chrom ges.	μg/L	<1,0	Z0	<1,0	Z 0	<1,0	Z 0	
Kupfer	μg/L	<1,0	Z0	3,9	Z 0	<1,0	Z0	
Nickel	µg/L	2,6	Z 0	3,7	Z 0	<1,0	Z0	
Quecksilber	µg/L	<0,20	Z 0	<0,20	Z0	<0,20	Z0	
Zink	µg/L	<10	Z0	<10	Z0	<10	Z0	
	1 3, =	0		.10		- 10		

Angewandte Verfahren und Bestimmungsgrenzen (BG)

Parameter	BG	Einheit	Methode	
Trockenrückstand	0,40	Masse-%	DIN ISO 11465: 1996-12 ^a 5	
EOX	1,0	mg/kg TM	US-Extr. Cyclo/Hex/Acet; DIN 38414 (S17): 2017-01 ^a 5	
Kohlenwasserstoffe	100	mg/kg TM	DIN EN 14039: 2005-01 i.V.m. LAGA KW/04: 2009-12 ^a ₅	
mobiler Anteil bis C22	50	mg/kg TM	DIN EN ISO 16703: 2011-09°i.V.m. LAGA KW/04: 2009-12° 5	
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380: 2013-10 ^a ₅	
Summe BTEX	1,0	mg/kg TM	DIN EN ISO 22155: 2016-07° 5	
Summe LHKW	1,0	mg/kg TM	DIN EN ISO 22155: 2016-07° 5	
Summe PAK (EPA)		mg/kg TM	DIN ISO 18287: 2006-05° 5	
Benzo(a)pyren	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 5	
PCB Summe 6 Kongenere		mg/kg TM	DIN EN 15308: 2016-12° ₅	
Aufschluss mit Königswasser			DIN EN 13657: 2003-01° 5	
Arsen	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5	
Blei	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5	
Cadmium	0,10	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Chrom ges.	1,0	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Kupfer	1,0	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Nickel	1,0	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Quecksilber	0,10	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Thallium	0,30	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
Zink	1,0	mg/kg TM	DIN EN 16171: 2017-01 ^a 5	
тос	0,050	Masse-% TM	M DIN EN 13137: 2001-12 (als Einfachbest.) ^a ₅	
Eluat			DIN EN 12457-4: 2003-01° 5	
pH-Wert			DIN EN ISO 10523: 2012-04 ^a ₅	
Leitfähigkeit		μS/cm	DIN EN 27888: 1993-11 ^a ₅	
Chlorid	0,60	mg/L	DIN EN ISO 10304-1: 2009-07° 5	
Sulfat	1,0	mg/L	DIN EN ISO 10304-1: 2009-07° 5	
Cyanid ges.	5,0	μg/L	DIN EN ISO 14403-2 (D3): 2012-10 ^a 5	
Phenolindex	5,0	μg/L	DIN EN ISO 14402: 1999-12° 5	
Arsen	0,50	μg/L	DIN EN ISO 17294-2: 2017-01 ^a 5	
Blei	1,0	μg/L	DIN EN ISO 17294-2: 2017-01° 5	
Cadmium	0,30	μg/L	DIN EN ISO 17294-2: 2017-01 ^a 5	
Chrom ges.	1,0	μg/L	DIN EN ISO 17294-2: 2017-01 ^a ₅	
Kupfer	1,0	μg/L	DIN EN ISO 17294-2: 2017-01 ^a ₅	
Nickel	1,0	μg/L	DIN EN ISO 17294-2: 2017-01° 5	
Quecksilber	0,20	μg/L	DIN EN ISO 17294-2: 2017-01° 5	
Zink	10	μg/L	DIN EN ISO 17294-2: 2017-01° 5	

BG = Bestimmungsgrenze MU = Messunsicherheit n.a. = nicht auswertbar n.b. = nicht bestimmbar n.n. = nicht nachweisbar

Zuordnungswert in Klammern gilt nur in besonderen Fällen

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: ₅GBA Pinneberg

Anlage 5.2

Probenliste der chemischen Analytik

Az.: HH 261.0/17

Probenliste der chemischen Analytik

Lage / Bereich	Misch- probennummer	Sondierpunkt	Probennummer	Untersuchungstiefe
		BK08	UWP1	0,00 - 1,00 m
	Γ	BK13	UWP1	0,00 - 1,00 m
Straße Nord	MP1	BK24	UWP1	0,00 - 1,00 m
		BK33	UWP1	0,00 - 1,00 m
		BK113	UWP1	0,00 - 1,00 m
		BK18	UWP1	0,00 - 1,00 m
Ot0 - 0:-1	MDO	BK28	UWP1	0,00 - 1,00 m
Straße Süd	MP2	BK30	UWP1	0,00 - 1,00 m
		BK37	UWP1	0,00 - 1,00 m
		BK110	UWP2	1,00 - 2,00 m
gewachsene Sande	MP3	BK116	UWP2	0,52 - 1,00 m
		BK121	UWP2	0,35 - 1,00 m
		BK110	UWP1	0,00 - 1,00 m
humoser Oberboden	MP4	BK116	UWP1	0,00 - 0,52 m
		BK121	UWP1	0,00 - 0,35 m
		HDB05	UWP2+3	0,18 - 0,53 m
	MP5	HDB03	UWP2-4	0,13 - 0,60 m
		HDB01	UWP2+3	0,13 - 0,41 m
Sonder-Beprobung		HDB02	UWP2+3	0,15 - 0,40 m
		HDB04	UWP2+3	0,12 - 0,40 m
		HDB06	UWP2+3	0,08 - 0,45 m
T (LADO	BK05	UWP1	0,00 - 0,45 m
Torf	MP6	BK105	HDB-BP1	0,00 - 0,80 m
		BS43 (RP)	UWP1	0,00 - 0,80 m
	MP7	BS41	UWP1	0,00 - 0,95 m
Gewerbestraße bis nördlich der		BS40	UWP1	0,00 - 0,85 m
Bahnstrecke		BS43 (RP)	UWP2-UWP7	0,80 - 9,00 m
(Schmutzwasser- druckleitung)	LADO	BS42	UWP2	0,90 - 2,00 m
didditionally)	MP8	BS41	UWP2+UWP3	0,95 - 3,15 m
		BS40	UWP2-UWP5	0,85 - 3,40 m
		BS48	UWP1*	0,00 - 0,50 m
		BS47	UWP1+UWP2	0,00 - 0,45 m
	MP9	BS46	UWP1+UWP2	0,00 - 0,40 m
		BS45	UWP1+UWP2	0,00 - 0,65 m
Voßdrift (Schmutz-		BS44 (RP)	UWP1	0,00 - 0,40 m
wassersiel)		BS48	UWP2+UWP3,BP1	0,50 - 3,00 m
		BS47	UWP3+UWP4,BP1	0,45 - 3,00 m
	MP10	BS46	UWP3+UWP4,BP1	0,40 - 3,00 m
		BS45	UWP3+UWP4,BP1	0,65 - 3,00 m
		BS44 (RP)	UWP2-UWP4	0,40 - 3,00 m

Anlage 5.2 Seite 1 / 3

Probenliste der chemischen Analytik

Lage / Bereich	Misch- probennummer	Sondierpunkt	Probennummer	Untersuchungstiefe
		BS49	UWP2+UWP3	0,00 - 0,25 m
	MP11	BS50	UWP2+UWP3	0,00 - 0,35 m
westlicher Knoten der B73		BS51	UWP1*,UWP2+ UWP3,UWP4*	0,00 - 1,15 m
	MP12 —	BS49	UWP4	0,25 - 1,10 m
	IVIF 12	BS50	UWP4	0,35 - 1,10 m
		BS52	UWP1+UWP2	0,00 - 1,00 m
		HDB14	UWP1	0,00 - 0,03 m
		BS53	UWP1	0,00 - 1,00 m
östlicher Knoten	MP13	BS54	UWP1,UWP2*, UWP3+UWP4	0,00 - 1,50 m
der B73		HDB15	UWP1+UWP2	0,00 - 0,10 m
		HDB16	UWP1-UWP5	0,00 - 1,20 m
		BS53	UWP2-UWP4	1,00 - 3,30 m
	MP14	BS54	UWP5+UWP6	1,50 - 3,30 m
		HDB16	UWP6	1,20 - 2,00 m
		BS55	UWP1	0,00 - 0,40 m
		BS56	UWP1*	0,00 - 0,25 m
	MP15	BS58	UWP1	0,00 - 0,40 m
	WF 13	BS59	UWP1	0,00 - 0,30 m
Panzerrampe, Abschnitt 1		BS60	UWP1	0,00 - 0,40 m
		BS61	UWP1	0,00 - 0,35 m
	MP16	BS55	UWP2	0,40 - 1,10 m
		BS56	UWP2	0,25 - 1,05 m
		BS58	UWP2+UWP3	0,40 - 1,70 m
		BS59	UWP2+UWP3	0,30 - 1,85 m
		BS60	UWP2	0,40 - 1,50 m
		BS61	UWP2+UWP3	0,35 - 1,48 m
		BS62	UWP1	0,00 - 0,30 m
	MP17	BS63	UWP1	0,00 - 0,40 m
5		BS64	UWP1	0,00 - 0,30 m
Panzerrampe, Abschnitt 2		BS65	UWP1+UWP2	0,00 - 1,05 m
	MP18 —	BS66	UWP1,UWP2*,UWP3	0,00 - 1,25 m
	IWI TO	BS67	UWP1-UWP3	0,00 - 1,00 m
		BS68	UWP1+UWP2,UWP3*	0,00 - 1,30 m
		BS69	UWP1,UWP2*	0,00 - 0,65 m
		BS70	UWP1	0,00 - 0,35 m
		BS71	UWP1	0,00 - 0,40 m
Kommunaltrasse	MP19	BS72	UWP1	0,00 - 0,45 m
Norminalia asse	IVIF 13	BS73	UWP1	0,00 - 0,40 m
		BS74	UWP1+UWP2	0,00 - 1,10 m
		BS75	UWP1	0,00 - 0,55 m
	Γ	BS76	UWP1-UWP4	0,00 - 1,05 m

Anlage 5.2 Seite 2 / 3

Probenliste der chemischen Analytik

Lage / Bereich	Misch- probennummer	Sondierpunkt	Probennummer	Untersuchungstiefe
		BS69	UWP3+UWP4	0,65 - 2,00 m
		BS70	UWP2+UWP3	0,35 - 2,00 m
		BS71	UWP2+UWP3	0,40 - 2,00 m
Kommunaltrasse	MP20	BS72	UWP2+UWP3	0,45 - 2,00 m
Kommunaitrasse	IVIPZU	BS73	UWP2+UWP3	0,40 - 2,00 m
		BS74	UWP3	1,10 - 2,00 m
		BS75	UWP2+UWP3	0,55 - 2,00 m
		BS76	UWP5	1,05 - 2,00 m
		BS77	UWP1+UWP2	0,00 - 0,90 m
	MP21	BS78	UWP1-UWP3	0,00 - 1,10 m
Lärmaahutzuand		BS79	UWP1	0,00 - 0,55 m
Lärmschutzwand		BS77	UWP3	0,90 - 2,00 m
	MP22	BS78	UWP4	1,10 - 2,00 m
			UWP2+UWP3	0,55 - 2,00 m

Anlage 5.2 Seite 3 / 3

Anlage 5.3

AT4-Analytik, Torf

Az.: HH 261.0/17

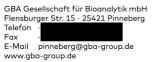
GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

22587 Hamburg

Prüfbericht-Nr.: 2017P518535 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	03.11.2017
Projekt	BV Neugraben Fischbek 67
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	HH 261.0/17
Verpackung	PE-Eimer
Probenmenge	ca. 6 kg
Auftragsnummer	17512277
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn / -ende	03.11.2017 - 13.11.2017
Methoden	siehe letzte Seite
Unteraufträge	
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.


Pinneberg, 13.11.2017

(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 2 zu Prüfbericht-Nr.: 2017P518535 / 1

Prüfbericht-Nr.: 2017P518535 / 1 BV Neugraben Fischbek 67

Auftrag		17512277	17512277
Probe-Nr.		002	003
Material		Boden	Boden
Probenbezeichnung		BK05, EP1	BK105, EP1
Probemenge		ca. 6 kg	ca. 6 kg
Probeneingang		03.11.2017	03.11.2017
Analysenergebnisse	Einheit		
Trockenrückstand	Masse-%	54,5	18,0
Atmungsaktivität (AT4)	mg O2/g TM	<1,0	1,3

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Trockenrückstand	0,40	Masse-%	DIN ISO 11465 ^a
Atmungsaktivität (AT4)	1,0	mg O2/g TM	DepV Anh. 4, Nr. 3.3.1 a Ç

 $\label{thm:continuous} \mbox{Die mit a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.}$

Untersuchungslabor: ÇGBA Gelsenkirchen

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Straße 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure ISO 14001 ISO 45001 zertifiziert

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2020P510281 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	09.04.2020
Projekt	BV Neugraben-Fischbek 67
Material	Boden
Kennzeichnung	NF67/2000, EP HDB's
Auftrag	HH 261.0/17
Verpackung	PE-Eimer
Probenmenge	ca. 12 kg
AuftragsNr.	20506267
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Analysenbeginn / -ende	09.04.2020 - 21.04.2020
Methoden	siehe letzte Seite
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinnehera 21 04 2020

Projektbearbeitung / Kundenbetreuung

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Es wird keine Verantwortung für die Richtigkeit der Probenahme übernommen, wenn die Proben nicht durch die GBA oder in ihrem Auftrag genommen wurden. In diesem Fall beziehen sich die Ergebnisse auf die Probe wie erhalten. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden. Entscheidungsregeln der GBA sind in den AGBs einzusehen.

Seite 1 von 2 zu Prüfbericht-Nr.: 2020P510281 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15, 25421 Pinneberg Telefon

E-Mail pinneberg@gba-group.de www.gba-group.com

Sitz der Gesellschaft: Hamburg Handelsregister: Hamburg HRB 42774

Auftrag		20506267
Probe-Nr.		001
Material		Boden
Probenbezeichnung		NF67/2000, EP HDB's
Probemenge		ca. 12 kg
Probeneingang		09.04.2020
Analysenergebnisse	Einheit	
Trockenrückstand	Masse-%	38,9
pH-Wert (CaCl ₂)		4,7
TOC	Masse-% TM	15
Atmungsaktivität (AT4)	mg O2/g TM	<1,0
Glühverlust	Masse-% TM	39,7

BG = Bestimmungsgrenze MU = Messunsicherheit n.a. = nicht auswertbar n.b. = nicht bestimmbar n.n. = nicht nachweisbar

Angewandte Verfahren

Parameter	BG	Einheit	Methode
Trockenrückstand	0,4	Masse-%	DIN ISO 11465: 1996-12° 5
pH-Wert (CaCl₂)			DIN ISO 10390: 2005-12 ^a ₅
тос	0,050	Masse-% TM	DIN EN 15936: 2012-11 ^a ₅
Atmungsaktivität (AT4)	1,0	mg O2/g TM	DepV Anh. 4, Nr. 3.3.1 ^a ₂
Glühverlust	0,1	Masse-% TM	DIN EN 15935: 2012-11° ₅

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: ₅GBA Pinneberg ₂GBA Gelsenkirchen

Anlage 5.4

PAK – Analytik, Asphalt

Az.: HH 261.0/17

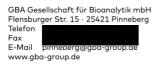
GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

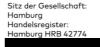
Kempfert Geotechnik GmbH Beratende Ingenieure

22587 Hamburg

Prüfbericht-Nr.: 2017P518682 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure		
Eingangsdatum	25.10.2017		
Projekt	BV Neugraben - Fischbek 67		
Material	Asphalt		
Kennzeichnung	siehe Tabelle		
Auftrag	HH 261.0/17		
Verpackung	Schraubdeckelglas		
Probenmenge	2 x ca. 600 g		
Auftragsnummer	17511900		
Probenahme	durch den Auftraggeber		
Probentransport	GBA		
Labor	GBA Gesellschaft für Bioanalytik mbH		
Prüfbeginn / -ende	25.10.2017 - 14.11.2017		
Methoden	siehe letzte Seite		
Unteraufträge	Asbest: CRB GmbH, Hardegsen		
Bemerkung			
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.		


Pinneberg, 14.11.2017


(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2017P518682 / 1

Prüfbericht-Nr.: 2017P518682 / 1 BV Neugraben - Fischbek 67

Auftrag		17511900	17511900
Probe-Nr.		006	007
Material		Asphalt	Asphalt
Probenbezeichnung		AP1b	AP2b
Probemenge		2 x ca. 600 g	2 x ca. 600 g
Probeneingang		25.10.2017	25.10.2017
Analysenergebnisse	Einheit		
Summe PAK (EPA)	mg/kg	4,54	0,600
Naphthalin	mg/kg	<0,10	<0,10
Acenaphthylen	mg/kg	<0,10	<0,10
Acenaphthen	mg/kg	0,14	<0,10
Fluoren	mg/kg	<0,10	<0,10
Phenanthren	mg/kg	1,3	0,10
Anthracen	mg/kg	<0,10	<0,10
Fluoranthen	mg/kg	1,0	<0,10
Pyren	mg/kg	0,79	<0,10
Benz(a)anthracen	mg/kg	0,26	<0,10
Chrysen	mg/kg	0,46	0,10
Benzo(b)fluoranthen	mg/kg	0,38	0,20
Benzo(k)fluoranthen	mg/kg	<0,20	<0,20
Benzo(a)pyren	mg/kg	<0,20	<0,20
Indeno(1,2,3-cd)pyren	mg/kg	<0,20	<0,20
Dibenz(ah)anthracen	mg/kg	<0,20	<0,20
Benzo(g,h,i)perylen	mg/kg	0,21	0,20
1-Methylnaphthalin	mg/kg	0,41	<0,10
2-Methylnaphthalin	mg/kg	0,25	<0,10
Eluat			
pH-Wert		8,7	8,2
Leitfähigkeit	μS/cm	48	33
Phenolindex	mg/L	<0,0050	<0,0050
Asbest gesamt	Masse-%		
Asbest lungengängig	Masse-%	0,0090	<0,0080
Faserzahl	1/mg	632	0

Prüfbericht-Nr.: 2017P518682 / 1 BV Neugraben - Fischbek 67

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
	grenze		
Summe PAK (EPA)		mg/kg	berechnet
Naphthalin	0,10	mg/kg	DIN ISO 18287 ^a
Acenaphthylen	0,10	mg/kg	DIN ISO 18287 ^a
Acenaphthen	0,10	mg/kg	DIN ISO 18287 ^a
Fluoren	0,10	mg/kg	DIN ISO 18287 ^a
Phenanthren	0,10	mg/kg	DIN ISO 18287 ^a
Anthracen	0,10	mg/kg	DIN ISO 18287 ^a
Fluoranthen	0,10	mg/kg	DIN ISO 18287 ^a
Pyren	0,10	mg/kg	DIN ISO 18287 ^a
Benz(a)anthracen	0,10	mg/kg	DIN ISO 18287 ^a
Chrysen	0,10	mg/kg	DIN ISO 18287 ^a
Benzo(b)fluoranthen	0,20	mg/kg	DIN ISO 18287 ^a
Benzo(k)fluoranthen	0,20	mg/kg	DIN ISO 18287 ^a
Benzo(a)pyren	0,20	mg/kg	DIN ISO 18287 ^a
Indeno(1,2,3-cd)pyren	0,20	mg/kg	DIN ISO 18287 ^a
Dibenz(ah)anthracen	0,20	mg/kg	DIN ISO 18287 ^a
Benzo(g,h,i)perylen	0,20	mg/kg	DIN ISO 18287 ^a
1-Methylnaphthalin	0,10	mg/kg	DIN ISO 18287 ^a
2-Methylnaphthalin	0,10	mg/kg	DIN ISO 18287 ^a
Eluat			DIN EN 12457-4 ^a
pH-Wert			DIN EN ISO 10523 ^a
Leitfähigkeit		μS/cm	DIN EN 27888 (C8) ^a
Phenolindex	0,0050	mg/L	DIN EN ISO 14402 (H37) ^a
Asbest gesamt		Masse-%	TRGS 517 (BIA-Verfahren 7487) ^a Æ
Asbest lungengängig		Masse-%	TRGS 517 (BIA-Verfahren 7487) ^a Æ
Faserzahl		1/mg	TRGS 517 (BIA-Verfahren 7487) ^a Æ

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: #Fremdlabor

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Straße 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2020P510282 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure	
Eingangsdatum	09.04.2020	
Projekt	BV Neugraben-Fischbek 67	
Material	Asphalt	
Kennzeichnung	siehe Tabelle	
Auftrag	HH 261.0/17	
Verpackung	Schraubdeckelglas	
Probenmenge	ca. 400 g	
GBA-Nummer	20506267	
Probenahme	durch den Auftraggeber	
Probentransport	GBA	
Labor	GBA Gesellschaft für Bioanalytik mbH	
Prüfbeginn	09.04.2020	
Prüfende	21.04.2020	
Methoden	siehe Anlage	
Bemerkung		
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Bodenproben drei Monate und Wasserproben vier Wochen aufbewahrt.	

Pinnehera 21 04 2020

Projektbearbeitung / Kundenbetreuung

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Es wird keine Verantwortung für die Richtigkeit der Probenahme übemommen, wenn die Proben nicht durch die GBA oder in ihrem Auftrag genommen wurden. In diesem Fall beziehen sich die Ergebnisse auf die Probe wie erhalten. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden. Entscheidungsregeln der GBA sind in den AGBs einzusehen.

Seite 1 von 3 zu Prüfbericht-Nr.: 2020P510282 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15, 25421 Pinneberg Telefon -

E-Mail pinneberg@gba-group.de www.gba-group.com

Sitz der Gesellschaft: Hamburg Handelsregister: Hamburg HRB 42774

- -			
GBA-Nummer		20506267	20506267
Probe-Nr.		002	003
Material		Asphalt	Asphalt
Probenbezeichnung		BS 49	BS 50
Probemenge		ca. 400 g	ca. 400 g
Probeneingang		09.04.2020	09.04.2020
Analysenergebnisse	Einheit		
Summe PAK (EPA)	mg/kg	1,11	0,400
Naphthalin	mg/kg	<0,10	<0,10
Acenaphthylen	mg/kg	<0,10	<0,10
Acenaphthen	mg/kg	<0,10	<0,10
Fluoren	mg/kg	<0,10	<0,10
Phenanthren	mg/kg	0,22	<0,10
Anthracen	mg/kg	<0,10	<0,10
Fluoranthen	mg/kg	<0,10	<0,10
Pyren	mg/kg	0,11	<0,10
Benz(a)anthracen	mg/kg	<0,10	<0,10
Chrysen	mg/kg	0,22	0,10
Benzo(b)fluoranthen	mg/kg	<0,20	<0,20
Benzo(k)fluoranthen	mg/kg	<0,20	<0,20
Benzo(a)pyren	mg/kg	0,20	<0,20
Indeno(1,2,3-cd)pyren	mg/kg	<0,20	<0,20
Dibenz(ah)anthracen	mg/kg	<0,20	<0,20
Benzo(g,h,i)perylen	mg/kg	0,36	0,30
1-Methylnaphthalin	mg/kg	<0,10	<0,10
2-Methylnaphthalin	mg/kg	<0,10	<0,10
Eluat			
pH-Wert		9,7	8,9
Leitfähigkeit	μS/cm	37	28
Phenolindex	mg/L	<0,0050	<0,0050

BG = Bestimmungsgrenze MU = Messunsicherheit n.a. = nicht auswertbar n.b. = nicht bestimmbar n.n. = nicht nachweisbar

Prüfbericht-Nr.: 2020P510282 / 1

Angewandte Verfahren

Parameter	BG	Einheit	Methode
Naphthalin	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Acenaphthylen	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Acenaphthen	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Fluoren	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Phenanthren	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Anthracen	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Fluoranthen	0,10	mg/kg	DIN ISO 18287: 2006-05 ^a ₅
Pyren	0,10	mg/kg	DIN ISO 18287: 2006-05 ^a ₅
Benz(a)anthracen	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Chrysen	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
Benzo(b)fluoranthen	0,20	mg/kg	DIN ISO 18287: 2006-05° 5
Benzo(k)fluoranthen	0,20	mg/kg	DIN ISO 18287: 2006-05 ^a 5
Benzo(a)pyren	0,20	mg/kg	DIN ISO 18287: 2006-05° 5
Indeno(1,2,3-cd)pyren	0,20	mg/kg	DIN ISO 18287: 2006-05 ^a 5
Dibenz(ah)anthracen	0,20	mg/kg	DIN ISO 18287: 2006-05° 5
Benzo(g,h,i)perylen	0,20	mg/kg	DIN ISO 18287: 2006-05° 5
Eluat			DIN EN 12457-4: 2003-01 ^a ₅
pH-Wert			DIN EN ISO 10523: 2012-04° 5
Leitfähigkeit		μS/cm	DIN EN 27888: 1993-11 ^a 5
Phenolindex	0,0050	mg/L	DIN EN ISO 14402: 1999-12 ^a ₅
Summe PAK (EPA)		mg/kg	berechnet 5
1-Methylnaphthalin	0,10	mg/kg	DIN ISO 18287: 2006-05° 5
2-Methylnaphthalin	0,10	mg/kg	DIN ISO 18287: 2006-05 ^a 5

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: ₅GBA Pinneberg

Anlage 5.5

BBodSchV-Analytik

Az.: HH 261.0/17

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2017P518681 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure	
Eingangsdatum	25.10.2017	
Projekt	BV Neugraben - Fischbek 67	
Material	Boden	
Kennzeichnung	MP 4	
Auftrag	HH 261.0/17	
Verpackung	Schraubdeckelglas	
Probenmenge	ca. 500-700 g	
Auftragsnummer	17511900	
Probenahme	durch den Auftraggeber	
Probentransport	GBA	
Labor	GBA Gesellschaft für Bioanalytik mbH	
Prüfbeginn / -ende	25.10.2017 - 14.11.2017	
Methoden	siehe letzte Seite	
Unteraufträge		
Bemerkung		
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.	

Pinneberg, 14.11.2017

(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 5 zu Prüfbericht-Nr.: 2017P518681 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15 · 25421 Pinneberg Telefon + Fax + E-Mail pinneberg@gba-group.de www.gba-group.de

Prüfbericht-Nr.: 2017P518681 / 1 BV Neugraben - Fischbek 67

Auftrag		17511900
Probe-Nr.		005
Material		Boden
Probenbezeichnung		MP 4
Probemenge		ca. 500-700 g
Probeneingang		25.10.2017
Analysenergebnisse	Einheit	2011012017
Fraktion < 2 mm	Masse-% TM	100,0
Fraktion > 2 mm	Masse-%	<0,1
Anteil Fremdmaterial	Masse-%	0,00
Trockenrückstand	Masse-%	84,6
Aufschluss mit Königswasser	IVIASSE-70	04,0
Arsen	mg/kg TM	1,6
Blei	mg/kg TM	1,0
Cadmium	mg/kg TM	0,20
Chrom ges.	mg/kg TM	3,7
Nickel	mg/kg TM	1,2
Quecksilber	mg/kg TM	<0,10
Cyanid ges.	mg/kg TM	<1,0
Organochlorpestizide	IIIg/kg IIvi	~1,0
Hexachlorbenzol	mg/kg TM	<0,050
α-HCH	mg/kg TM	<0,030
β-НСН	mg/kg TM	<0,010
ρ-11011 γ-HCH	mg/kg TM	<0,010
γ-non δ-HCH	mg/kg TM	<0,010
Aldrin	mg/kg TM	<0,010
o,p-DDE	mg/kg TM	<0,0100
p,p-DDE	mg/kg TM	<0,0100
o,p-DDD	mg/kg TM	<0,0100
p,p-DDD	mg/kg TM	<0,0100
o,p-DDT	mg/kg TM	<0,0100
p,p-DDT	mg/kg TM	0,0194
Summe PAK (EPA)	mg/kg TM	n.n.
Naphthalin	mg/kg TM	<0,050
Acenaphthylen	mg/kg TM	<0,050
Acenaphthen	mg/kg TM	<0,050
Fluoren	mg/kg TM	<0,050
Phenanthren	mg/kg TM	<0,050
Anthracen	mg/kg TM	<0,050
Fluoranthen	mg/kg TM	<0,050
Pyren	mg/kg TM	<0,050
Benz(a)anthracen	mg/kg TM	<0,050
Chrysen	mg/kg TM	<0,050
Benzo(b)fluoranthen	mg/kg TM	<0,050
Benzo(k)fluoranthen	mg/kg TM	<0,050
Benzo(a)pyren	mg/kg TM	<0,050
Indeno(1,2,3-cd)pyren	mg/kg TM	<0,050
Dibenz(ah)anthracen	mg/kg TM	<0,050
Benzo(g,h,i)perylen	mg/kg TM	<0,050

Prüfbericht-Nr.: 2017P518681 / 1 BV Neugraben - Fischbek 67

•		
Auftrag		17511900
Probe-Nr.		005
Material		Boden
Probenbezeichnung		MP 4
Probemenge		ca. 500-700 g
Probeneingang		25.10.2017
Pentachlorphenol	mg/kg TM	<0,10
PCB Summe 6 Kongenere	mg/kg TM	n.n.
PCB 28	mg/kg TM	<0,0030
PCB 52	mg/kg TM	<0,0030
PCB 101	mg/kg TM	<0,0030
PCB 153	mg/kg TM	<0,0030
PCB 138	mg/kg TM	<0,0030
PCB 180	mg/kg TM	<0,0030

Prüfbericht-Nr.: 2017P518681 / 1 BV Neugraben - Fischbek 67

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
Parameter		Einneit	Wethode
	grenze		
Fraktion < 2 mm	0,10	Masse-% TM	
Fraktion > 2 mm	0,10	Masse-%	DIN 18123 ^a
Anteil Fremdmaterial		Masse-%	an BBodSchG ^a
Trockenrückstand	0,40	Masse-%	DIN ISO 11465 ^a
Aufschluss mit Königswasser			DIN EN 13657 ^a
Arsen	1,0	mg/kg TM	DIN EN 16171 ^a
Blei	1,0	mg/kg TM	DIN EN 16171 ^a
Cadmium	0,10	mg/kg TM	DIN EN 16171°
Chrom ges.	1,0	mg/kg TM	DIN EN 16171 ^a
Nickel	1,0	mg/kg TM	DIN EN 16171°
Quecksilber	0,10	mg/kg TM	DIN EN 16171 ^a
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380°
Organochlorpestizide			
Hexachlorbenzol	0,050	mg/kg TM	an. DIN EN ISO 6468-F1ª
α-HCH	0,010	mg/kg TM	DIN ISO 10382 ^a
β-НСН	0,010	mg/kg TM	DIN ISO 10382 ^a
у-НСН	0,010	mg/kg TM	DIN ISO 10382 ^a
δ-HCH	0,010	mg/kg TM	DIN ISO 10382 ^a
Aldrin	0,010	mg/kg TM	DIN ISO 10382 ^a
o,p-DDE	0,010	mg/kg TM	DIN ISO 10382 ^a
p,p-DDE	0,010	mg/kg TM	DIN ISO 10382ª
o,p-DDD	0,010	mg/kg TM	DIN ISO 10382ª
p,p-DDD	0,010	mg/kg TM	DIN ISO 10382 ^a
o,p-DDT	0,010	mg/kg TM	DIN ISO 10382 ^a
p,p-DDT	0,010	mg/kg TM	DIN ISO 10382 ^a
Summe PAK (EPA)		mg/kg TM	berechnet
Naphthalin	0,050	mg/kg TM	DIN ISO 18287º
Acenaphthylen	0,050	mg/kg TM	DIN ISO 18287 ^a
Acenaphthen	0,050	mg/kg TM	DIN ISO 18287 ^a
Fluoren	0,050	mg/kg TM	DIN ISO 18287 ^a
Phenanthren	0,050	mg/kg TM	DIN ISO 18287 ^a
Anthracen	0,050	mg/kg TM	DIN ISO 18287 ^a
Fluoranthen	0,050	mg/kg TM	DIN ISO 18287º
Pyren	0,050	mg/kg TM	DIN ISO 18287 ^a
Benz(a)anthracen	0,050	mg/kg TM	DIN ISO 18287 ^a
Chrysen	0,050	mg/kg TM	DIN ISO 18287 ^a
Benzo(b)fluoranthen	0,050	mg/kg TM	DIN ISO 18287 ^a
Benzo(k)fluoranthen	0,050	mg/kg TM	DIN ISO 18287°
Benzo(a)pyren	0,050	mg/kg TM	DIN ISO 18287 ^a
Indeno(1,2,3-cd)pyren	0,050	mg/kg TM	DIN ISO 18287 ^a
Dibenz(ah)anthracen	0,050	mg/kg TM	DIN ISO 18287 ^a
Benzo(g,h,i)perylen	0,050	mg/kg TM	DIN ISO 18287 ^a
Pentachlorphenol	0,010	mg/kg TM	DIN ISO 14154 ^a
PCB Summe 6 Kongenere		mg/kg TM	DIN ISO 10382 ^a
PCB 28	0,0030	mg/kg TM	DIN ISO 10382 ^a
PCB 52	0,0030	mg/kg TM	DIN ISO 10382 ^a
PCB 101	0,0030	mg/kg TM	DIN ISO 10382 ^a
PCB 153	0,0030	mg/kg TM	DIN ISO 10382ª
PCB 138	0,0030	mg/kg TM	DIN ISO 10382ª
PCB 180	0,0030	mg/kg TM	DIN ISO 10382 ^a

LABORGRUPPE UMWELT

Prüfbericht-Nr.: 2017P518681 / 1 BV Neugraben - Fischbek 67

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

Anlage 5.6

Wasseranalytik, Beton- und Stahlangriff, Einleitparameter

Az.: HH 261.0/17

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Str. 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure

Hasenhöhe 128

22587 Hamburg

Prüfbericht-Nr.: 2017P512007 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	18.07.2017
Projekt	BV Neugraben-Fischbek 67
Material	Wasser
Kennzeichnung	BK 14
Auftrag	Analytik gem. Vorgabe des Auftraggebers
Verpackung	Glas- und PE-Flaschen
Probenmenge	ca. 6,35 L
Auftragsnummer	17507744
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn / -ende	18.07.2017 - 27.07.2017
Methoden	siehe letzte Seite
Unteraufträge	
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinnebera, 27.07.2017

(Geschäftsführer)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 3 zu Prüfbericht-Nr.: 2017P512007 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15 · 25421 Pinneberg Telefon → Fax →

Prüfbericht-Nr.: 2017P512007 / 1 BV Neugraben-Fischbek 67

Auftrag		17507744
Probe-Nr.		001
Material		Wasser
Probenbezeichnung		BK 14
Probemenge		ca. 6,35 L
Probeneingang		18.07.2017
Analysenergebnisse	Einheit	
Betonaggressivität		
pH-Wert		5,9
Geruch		unauffällig
Permanganat-Verbrauch	mg KMnO4/L	100
Gesamthärte	°dH	1,8
Härtehydrogencarbonat	°dH	1,5
Nichtcarbonathärte	°dH	0,32
Magnesium	mg/L	0,54
Ammonium	mg/L	<0,20
Sulfat	mg/L	5,3
Chlorid	mg/L	4,3
Kohlendioxid, kalklösend	mg/L	43
Stahlaggressivität		
Säurekapazität bis pH 4,3	mmol/L	0,530
Calcium	mg/L	12
Absetzbare Stoffe (0,5 h)	mL/L	<0,10
Abfiltrierbare Stoffe	mg/L	42
Eisen (II)	mg/L	1,3
Eisen, ges.	mg/L	1,4
Kohlenwasserstoffe	mg/L	<0,10
CSB	mg/L	42
AOX	mg/L	0,040
Arsen	mg/L	0,0019
Cadmium	mg/L	<0,00030
Chrom ges.	mg/L	0,0045
Blei	mg/L	0,0064
Nickel	mg/L	0,0066
Zink	mg/L	0,12
Kupfer	mg/L	0,051
Quecksilber	mg/L	<0,00020

Prüfbericht-Nr.: 2017P512007 / 1 BV Neugraben-Fischbek 67

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs- Einheit		Methode
	grenze		
Betonaggressivität			DIN EN 16502
pH-Wert			DIN EN ISO 10523 ^a
Geruch			DEV-B1/2ª
Permanganat-Verbrauch	2,0	mg KMnO4/L	DIN EN ISO 8467ª
Gesamthärte	0,010	°dH	DIN 38409-H6/ DIN EN ISO 17294-2 (E29)ª
Härtehydrogencarbonat		°dH	DIN 38 405-D8 ^a
Nichtcarbonathärte		°dH	berechnet
Magnesium	0,10	mg/L	DIN EN ISO 11885 (E22)ª
Ammonium	0,20	mg/L	DIN EN ISO 11732 (E23) ^a
Sulfat	0,50	mg/L	DIN EN ISO 10304-1/-2 (D19/20) ^a
Chlorid	0,60	mg/L	DIN EN ISO 10304-1/-2 (D19/20) ^a
Kohlendioxid, kalklösend	5,0	mg/L	DIN 4030 (Heyer) ^a
Stahlaggressivität			DIN 50929 Teil 3
Säurekapazität bis pH 4,3	0,010	mmol/L	DIN 38409-H7-1-2 ^a
Calcium	0,020	mg/L	DIN EN ISO 11885 (E22) ^a
Absetzbare Stoffe (0,5 h)	0,10	mL/L	DIN 38409-9 (H9) (Einfachbestimmung) ^a
Abfiltrierbare Stoffe	1,0	mg/L	DIN EN 38409-H2-2/3 ^a
Eisen (II)	0,25	mg/L	DIN 38406-1 (E1) ^a
Eisen, ges.	0,010	mg/L	DIN EN ISO 11885 (E22) ^a
Kohlenwasserstoffe	0,10	mg/L	DIN EN ISO 9377-2 (H53) ^a
CSB	15	mg/L	DIN ISO 15705 (H45) ^a
AOX	0,010	mg/L	DIN EN ISO 9562 (H14)ª Ç
Arsen	0,00050	mg/L	DIN EN ISO 17294-2 (E29) ^a
Cadmium	0,00030	mg/L	DIN EN ISO 17294-2 (E29) ^a
Chrom ges.	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Blei	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Nickel	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Zink	0,0050	mg/L	DIN EN ISO 17294-2 (E29) ^a
Kupfer	0,0010	mg/L	DIN EN ISO 17294-2 (E29) ^a
Quecksilber	0,00020	mg/L	DIN EN ISO 17294-2 (E29) ^a

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: ¢GBA Gelsenkirchen

Probe-Nr.: 17507744 / 001

Probenbezeichnung: BK 14

Tabelle 1: Expositionsklassen für Betonkorrosion durch chemischem Angriff durch Grundwasser nach DIN 1045-2 Tab. 2 / DIN EN 206-1

				Angriffsgrad	
Parameter	Messwert	Einheit	schwach angreifende Umgebung	mäßig angreifende Umgebung	stark angreifende Umgebung
			XA 1	XA 2	XA 3
pH-Wert	5,9		6,5 - 5,5	< 5,5 - 4,5	< 4,5 - >= 4,0
Kohlendioxid, kalklösend	43	mg/L	15 - 40	> 40 - 100	> 100
Ammonium	<0,20	mg/L	15 - 30	> 30 - 60	> 60 - 100
Magnesium	0,54	mg/L	300 - 1000	> 1000 - 3000	> 3000
Sulfat	5,3	mg/L	200 - 600	> 600 - 3000	> 3000 - 6000
Chlorid	4,3	mg/L			
Gesamthärte	1,8	°dH			
Härtehydrogencarbonat	1,5	°dH			
Permanganat-Verbrauch	100	mg KMnO4/L			

Kurzbeurteilung: Gemäß DIN EN 206-1 sind bei der hier untersuchten Wasserprobe besondere Maßnahmen nach DIN 1045 erforderlich. Das Wasser ist mäßig Beton angreifend.

Probe-Nr.: 17507744 / 001

Probenbezeichnung: BK 14

Tabelle 1: Beurteilung von Wässern gem. DIN 50929 Teil 3

Nr.	Merkmal und Dimension / Einheit	unlegierte Eisen	verzinkten Stahl		Bewertungs- ziffer
1	Wasserart	N1	M1		N1
	- fließende Gewässer	0	-2		
	- stehende Gewässer	-1	1		-1
	- Küste von Binnenseen	-3	-3		
	- anaerob. Moor, Meeresküste	-5	-5		
2	Lage des Objektes	N2	M2		N2
	- Unterwasserbereich	0	0		0
	- Wasser / Luft-Bereich	1	-6		
	- Spritzwasserbereich	0,3	-2		
3	c (CI-) + 2c (SO4 ² -) / mol/m ³	N3	М3		N3
	< 1	0	0	0,2	0
	> 1 bis 5	-2	0		
	> 5 bis 25	-4	-1		
	> 25 bis 100	-6	-2		
	> 100 bis 300	-7	-3		
	> 300	-8	-4		
4	Säurekapazität bis pH 4,3 mol/m³	N4	M4		N4
	< 1	1	-1	0,5	1
	1 bis 2	2	1		
	> 2 bis 4	3	1		
	> 4 bis 6	4	0		
	> 6	5	-1		
5	c (Ca²+) / mol/m³	N5	M5		N5
	< 0,5	-1	0	0,3	-1
	0,5 bis 2	0	2		
	> 2 bis 8	1	3		
	> 8	2	4		
6	pH-Wert	N6	М6		N6
	< 5,5	-3	-6		
	5,5 bis 6,5	-2	-4	5,9	-2
	> 6,5 bis 7,0	-1	-1		
	> 7,0 bis 7,5	0	1		
	> 7,5	1	1		

Bewertungszahlsumme Unterwasserbereich: W0 = N1 + N3 + N4 + N5 + N6 + N3/N4 = -3,00 Bewertungszahlsumme Wasser/Luft-Grenze: $W1 = W0 - N1 + N2 \times N3 =$ -2,00

Abschätzung der Korrosionswahrscheinlichkeiten:

W0- bzw. W1 - Werte	Mulden- und Lochkorrosion	Flächen- korrosion		
>= 0	sehr gering	sehr gering		
-1 bis -4	gering	sehr gering		
<-4 bis -8	mittel	gering		
<-8	hoch	mittel		

GBA Gesellschaft für Bioanalytik mbH \cdot Flensburger Straße 15 \cdot 25421 Pinneberg

Kempfert Geotechnik GmbH Beratende Ingenieure Hasenhöhe 128

22587 Hamburg

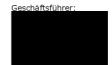
Prüfbericht-Nr.: 2020P504920 / 1

Auftraggeber	Kempfert Geotechnik GmbH Beratende Ingenieure
Eingangsdatum	14.02.2020
Projekt	BV Neugraben-Fischbek 67
Material	Grundwasser
Kennzeichnung	siehe Tabelle
Auftrag	HH 261.0/17
Verpackung	Glas- und PE-Flaschen
Probenmenge	ca. 1,75 l
GBA-Nummer	20502711
Probenahme	durch den Auftraggeber
Probentransport	GBA
Labor	GBA Gesellschaft für Bioanalytik mbH
Prüfbeginn	14.02.2020
Prüfende	25.02.2020
Methoden	siehe Anlage
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Bodenproben drei Monate und Wasserproben vier Wochen aufbewahrt.

Pinneberg, 25.02.2020

Projektbearbeitung / Kundenbetreuung

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Es wird keine Verantwortung für die Richtigkeit der Probenahme übemommen, wenn die Proben nicht durch die GBA oder in ihrem Auftrag genommen wurden. In diesem Fall beziehen sich die Ergebnisse auf die Probe wie erhalten. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden. Entscheidungsregeln der GBA sind in den AGBs einzusehen.


Seite 1 von 3 zu Prüfbericht-Nr.: 2020P504920 / 1

GBA Gesellschaft für Bioanalytik mbH Flensburger Str. 15, 25421 Pinneberg Telefon

E-Mail pinneberg@gba-group.de www.gba-group.com

Sitz der Gesellschaft: Hamburg Handelsregister: Hamburg HRB 42774

Prüfbericht-Nr.: 2020P504920 / 1 BV Neugraben-Fischbek 67

BV Neugraben-Fischbek 67			
GBA-Nummer		20502711	20502711
Probe-Nr.		001	002
Material		Grundwasser	Grundwasser
Probenbezeichnung		BK43	BK44
Probemenge		ca. 1,75 I	ca. 1,75 I
Probeneingang		14.02.2020	14.02.2020
Analysenergebnisse	Einheit		
Beton- und Stahlaggressivität			
pH-Wert		5,7	6,9
Geruch		unauffällig	unauffällig
Permanganat-Verbrauch	mg KMnO4/L	24	13
Gesamthärte	°dH	5,0	9,6
Härtehydrogencarbonat	°dH	0,55	2,8
Nichtcarbonathärte	°dH	4,5	6,7
Magnesium	mg/L	3,6	3,8
Ammonium	mg/L	0,42	1,6
Sulfat	mg/L	25	17
Chlorid	mg/L	27	110
Kohlendioxid, kalklösend	mg/L	25	20
Säurekapazität bis pH 4,3	mmol/L	0,197	1,01
Calcium	mg/L	30	62
Absetzbare Stoffe (0,5 h)	mL/L	0,20	4,0
Abfiltrierbare Stoffe	mg/L	711	3840
Ammonium-N	mg/L	0,33	1,2
Eisen (II)	mg/L	0,42	<0,25
Eisen, ges.	mg/L	0,42	1,0
Kohlenwasserstoffe	mg/L	<0,10	<0,10
CSB	mg/L	<15	<15
AOX	mg/L	0,020	0,020
Arsen	mg/L	0,00070	<0,00050
Cadmium	mg/L	<0,00030	<0,00030
Chrom ges.	mg/L	0,0036	<0,0010
Blei	mg/L	0,0014	<0,0010
Nickel	mg/L	0,0096	0,0048
Zink	mg/L	0,064	0,0061
Kupfer	mg/L	0,0043	0,0019
Quecksilber	mg/L	<0,00020	<0,00020

Prüfbericht-Nr.: 2020P504920 / 1

Angewandte Verfahren

Parameter	BG	Einheit	Methode
pH-Wert			DIN EN ISO 10523: 2012-04° 5
Geruch			DIN EN 1622 Anhang C: 2006-10 ^a ₅
Permanganat-Verbrauch	2,0	mg KMnO4/L	DIN EN ISO 8467: 1995-05° 5
Härtehydrogencarbonat		°dH	DIN 38 405-D8: 1971 ^a ₅
Ammonium	0,20	mg/L	DIN EN ISO 11732: 2005-05° 5
Sulfat	0,50	mg/L	DIN EN ISO 10304-1: 2009-07 ^a 5
Chlorid	0,60	mg/L	DIN EN ISO 10304-1: 2009-07° 5
Kohlendioxid, kalklösend	5,0	mg/L	DIN 4030-2: 2008-06° 5
Säurekapazität bis pH 4,3	0,0500	mmol/L	DIN 38409-7: 2005-12° ₅
Absetzbare Stoffe (0,5 h)	0,10	mL/L	DIN 38409-9: 1980-07° ₅
Abfiltrierbare Stoffe	2,0	mg/L	DIN EN 38409-H2-2/3: 1987-03° ₅
Ammonium-N	0,020	mg/L	DIN EN ISO 11732: 2005-05° 5
Kohlenwasserstoffe	0,10	mg/L	DIN EN ISO 9377-2 (H53): 2001-07° 5
CSB	15	mg/L	DIN ISO 15705 (H45): 2003-01° 5
AOX	0,010	mg/L	DIN EN ISO 9562 (H14): 2005-02° ₂
Arsen	0,00050	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Cadmium	0,00030	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Chrom ges.	0,0010	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Blei	0,0010	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Nickel	0,0010	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Zink	0,0050	mg/L	DIN EN ISO 17294-2: 2017-01° ₅
Kupfer	0,0010	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Quecksilber	0,00020	mg/L	DIN EN ISO 17294-2: 2017-01° 5
Gesamthärte	0,010	°dH	DIN 38409-6: 1986-01 ^a ₅
Magnesium	0,10	mg/L	DIN EN ISO 11885 (E22): 2009-09° 5
Calcium	0,020	mg/L	DIN EN ISO 11885 (E22): 2009-09° 5
Eisen (II)	0,25	mg/L	DIN 38406-1: 1983-05° ₅
Eisen, ges.	0,010	mg/L	DIN EN ISO 11885 (E22): 2009-09° 5
Beton- und Stahlaggressivität			
Nichtcarbonathärte		°dH	berechnet 5

Die mit ^a gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren. Untersuchungslabor: ₅GBA Pinneberg ₂GBA Gelsenkirchen

Probe-Nr.: 20502711 / 001

Probenbezeichnung: BK43

Tabelle 1: Expositionsklassen für Betonkorrosion durch chemischen Angriff durch Grundwasser nach DIN 4030 Teil 1 (06/2008), Tabelle 4

			Expositionsklasse		
	Messwert	Einheit	XA1	XA2	XA3
pH-Wert	5,7		6,5 - 5,5	< 5,5 - 4,5	< 4,5 - 4,0
Kohlendioxid, kalklösend	25	mg/L	15 - 40	> 40 - 100	> 100
Ammonium	0,42	mg/L	15 - 30	> 30 - 60	> 60 -100
Magnesium	3,6	mg/L	300 - 1000	>1000-3000	> 3000
Sulfat	25	mg/L	200 - 600	> 600 - 3000	> 3000 - 6000
Chlorid	27	mg/L			
Gesamthärte	5,0	°dH			
Härtehydrogencarbonat	0,55	°dH			
Permanganat-Verbrauch	24	mg KMnO4/L			

Kurzbeurteilung: Das Wasser ist in die Expositionsklasse XA1 einzustufen.

Probe-Nr.: 20502711 / 002

Probenbezeichnung: BK44

Tabelle 1: Expositionsklassen für Betonkorrosion durch chemischen Angriff durch Grundwasser nach DIN 4030 Teil 1 (06/2008), Tabelle 4

			Expositionsklasse		
	Messwert	Einheit	XA1	XA2	XA3
pH-Wert	6,9		6,5 - 5,5	< 5,5 - 4,5	< 4,5 - 4,0
Kohlendioxid, kalklösend	20	mg/L	15 - 40	> 40 - 100	> 100
Ammonium	1,6	mg/L	15 - 30	> 30 - 60	> 60 -100
Magnesium	3,8	mg/L	300 - 1000	>1000-3000	> 3000
Sulfat	17	mg/L	200 - 600	> 600 - 3000	> 3000 - 6000
Chlorid	110	mg/L			
Gesamthärte	9,6	°dH			
Härtehydrogencarbonat	2,8	°dH			
Permanganat-Verbrauch	13	mg KMnO4/L			

Kurzbeurteilung: Das Wasser ist in die Expositionsklasse XA1 einzustufen.

Probe-Nr.: 20502711 / 001

Probenbezeichnung: BK43

Tabelle 1: Beurteilung von Wässern gem. DIN 50929 Teil 3

Nr.	Merkmal und Dimension / Einheit	unlegierte Eisen	verzinkten Stahl		Bewertungs- ziffer
1	Wasserart - fließende Gewässer - stehende Gewässer - Küste von Binnenseen - anaerob. Moor, Meeresküste	N1 0 -1 -3 -5	M1 -2 1 -3 -5		N1 -1
2	Lage des Objektes - Unterwasserbereich - Wasser / Luft-Bereich - Spritzwasserbereich	N2 0 1 0,3	M2 0 -6 -2		N2 0
3	c (CI-) + 2c (SO4 ² -) / mol/m ³ < 1 > 1 bis 5 > 5 bis 25 > 25 bis 100 > 100 bis 300 > 300	N3 0 -2 -4 -6 -7 -8	M3 0 0 -1 -2 -3 -4	1,3	N3 -2
4	Säurekapazität bis pH 4,3 mol/m³ < 1 1 bis 2 > 2 bis 4 > 4 bis 6 > 6	N4 1 2 3 4 5	M4 -1 1 1 0 -1	0,20	N4 1
5	c (Ca ² +) / mol/m ³ < 0,5 0,5 bis 2 > 2 bis 8 > 8	N5 -1 0 1 2	M5 0 2 3 4	0,75	N5 0
6	pH-Wert < 5,5 5,5 bis 6,5 > 6,5 bis 7,0 > 7,0 bis 7,5 > 7,5	N6 -3 -2 -1 0	M6 -6 -4 -1 1	5,7	N6 -2

Bewertungszahlsumme Unterwasserbereich: W0 = N1 + N3 + N4 + N5 + N6 + N3/N4 = -6,00

Bewertungszahlsumme Wasser/Luft-Grenze: $W1 = W0 - N1 + N2 \times N3 =$ -5,00

Abschätzung der Korrosionswahrscheinlichkeiten:

W0- bzw. W1 - Werte	Mulden- und Lochkorrosion	Flächen- korrosion
>= 0	sehr gering	sehr gering
-1 bis -4	gering	sehr gering
<-4 bis -8	mittel	gering
<-8	hoch	mittel

20502711 / 002 Probe-Nr.:

Probenbezeichnung: BK44

 Tabelle 1:
 Beurteilung von Wässern gem. DIN 50929 Teil 3

Nr.	Merkmal und Dimension / Einheit				Bewertungs-
INI.	Merkmar und Dimension / Emmeit	unlegierte Eisen	verzinkten Stahl		ziffer
1	Wasserart	N1	M1		N1
	- fließende Gewässer	0	-2		
	- stehende Gewässer	-1	1		-1
	 Küste von Binnenseen 	-3	-3		
	- anaerob. Moor, Meeresküste	-5	-5		
2	Lage des Objektes	N2	M2		N2
	- Unterwasserbereich	0	0		0
	- Wasser / Luft-Bereich	1	-6		
	- Spritzwasserbereich	0,3	-2		
3	c (CI-) + 2c (SO4²-) / mol/m³	N3	М3		N3
	< 1	0	0		
	> 1 bis 5	-2	0	3,5	-2
	> 5 bis 25	-4	-1		
	> 25 bis 100	-6	-2		
	> 100 bis 300	-7	-3		
	> 300	-8	-4		
4	Säurekapazität bis pH 4,3 mol/m³	N4	М4		N4
	< 1	1	-1		
	1 bis 2	2	1	1,0	2
	> 2 bis 4	3	1		
	> 4 bis 6	4	0		
	> 6	5	-1		
5	c (Ca²+) / mol/m³	N5	M5		N5
	< 0,5	-1	0		
	0,5 bis 2	0	2	1,5	0
	> 2 bis 8	1	3		
	> 8	2	4		
6	pH-Wert	N6	M6		N6
	< 5,5	-3	-6		
	5,5 bis 6,5	-2	-4		_
	> 6,5 bis 7,0	-1	-1	6,9	-1
	> 7,0 bis 7,5	0	1 1		
	> 7,5	1	1		

Bewertungszahlsumme Unterwasserbereich: W0 = N1 + N3 + N4 + N5 + N6 + N3/N4 = -3,00 Bewertungszahlsumme Wasser/Luft-Grenze: W1 = W0 - N1 + N2 x N3 = -2,00

Abschätzung der Korrosionswahrscheinlichkeiten:

W0- bzw. W1 - Werte	Mulden- und Lochkorrosion	Flächen- korrosion
>= 0	sehr gering	sehr gering
-1 bis -4	gering	sehr gering
<-4 bis -8	mittel	gering
<-8	hoch	mittel

Anlage 6

Kennzeichnende Bodeneigenschaften der Schichten

Az.: HH 261.0/17

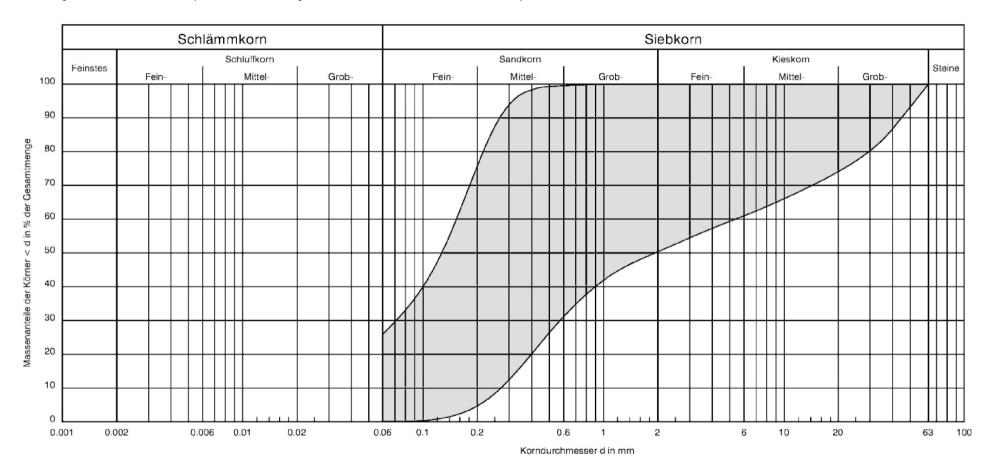
Kennzeichnende Bodeneigenschaften der Schichten (DIN 18300, DIN 18301, DIN 18304)

	Bodenschicht		
Kennwert/Parameter	S1		
Bezeichnung	Mutterboden		
Korngrößenverteilung - Kornkennzahl T/U/S/G (Erfahrungswert)	k. A.		
Steinanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering		
Blockanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering		
Mineralog. Zusammensetzung der Steine u. Blöcke gem. DIN EN ISO 14689-1	k. A.		
Wichte γ [kN/m³]	15 - 18		
Wassergehalt [%]	5 - 80		
Plastizitätszahl nach DIN EN ISO 17892-12 I _P [%]	k. A.		
Konsistenzzahl nach DIN EN ISO 17892-12 I _C [-]	k. A.		
Durchlässigkeit nach der Normenreihe DIN 18130-2 und DIN EN ISO 17892-11	k. A.		
Undränierte Scherfestigkeit nach DIN 4094-4 / DIN EN ISO 17892-7 bis -9 [kN/m²]	k. A.		
Lagerungsdichte nach DIN EN ISO 14688-2 / DIN 18126	sehr locker bis locker (SU, SU*, ST)		
Sensitivität nach DIN 4094-4	k. A.		
Organischer Anteil nach DIN 18128, Glühverlust [%]	5 - 40		
Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1	Humus, pflanzliche Reste, lebende Organismen und deren Ausscheidungen		
Kalkgehalt nach DIN 18129	k. A.		
Sulfatgehalt nach DIN EN 1997-2	k. A.		
Abrasivitätsbezeichnung (abgeleitet aus dem Cerchar- und dem LCPC-Verfahren)	schwach abrasiv		
Frostempfindlichkeit nach ZTV E-StB	F2 - F3		
Bodengruppe nach DIN 18196	Mu [OH, OU, SU, SU*, ST]		

k. A.: keine Angabe, da Kennwert / Parameter für Bodenart nicht relevant bzw. für anzuwendende Bauverfahren gem. Normung DIN 18300 ff. nicht gefordert

Kennzeichnende Bodeneigenschaften der Schichten (DIN 18300, DIN 18301, DIN 18304, DIN 18319, DIN 18234)

	Bodenschicht		
Kennwert/Parameter	S2		
Bezeichnung	Torf		
Korngrößenverteilung - Kornkennzahl T/U/S/G (Erfahrungswert)	k. A.		
Steinanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering		
Blockanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering		
Mineralog. Zusammensetzung der Steine u. Blöcke gem. DIN EN ISO 14689-1	k. A.		
Wichte γ [kN/m³]	10 - 13		
Wassergehalt [%]	40 - 300		
Plastizitätszahl nach DIN EN ISO 17892-12 I _P [%]	k. A.		
Konsistenzzahl nach DIN EN ISO 17892-12 I _C [-]	k. A.		
Durchlässigkeit nach der Normenreihe DIN 18130-2 und DIN EN ISO 17892-11	k.A.		
Undränierte Scherfestigkeit nach DIN 4094-4 / DIN EN ISO 17892-7 bis -9 [kN/m²]	5 - 40		
Lagerungsdichte nach DIN EN ISO 14688-2 / DIN 18126	k. A.		
Sensitivität nach DIN 4094-4	10 - 70		
Organischer Anteil nach DIN 18128, Glühverlust [%]	k. A.		
Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1	Humus, pflanzliche Reste, lebende Organismen und deren Ausscheidungen		
Kalkgehalt nach DIN 18129	k. A.		
Sulfatgehalt nach DIN EN 1997-2	nicht bis kaum abrasiv		
Abrasivitätsbezeichnung (abgeleitet aus dem Cerchar- und dem LCPC-Verfahren)	F2 - F3		
Bodengruppe nach DIN 18196	HN, HZ		

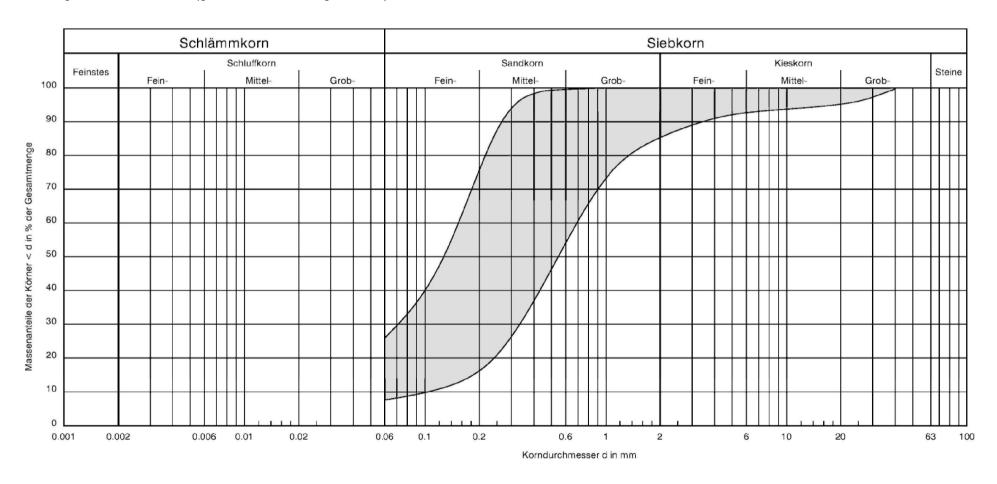

k. A.: keine Angabe, da Kennwert / Parameter für Bodenart nicht relevant bzw. für anzuwendende Bauverfahren gem. Normung DIN 18300 ff. nicht gefordert

Kennzeichnende Bodeneigenschaften der Schichten (DIN 18300, DIN 18301, DIN 18304, DIN 18319, DIN 18234)

Kennwert/Parameter	Bodenschicht S3	
Kennwerth drameter		
Bezeichnung	Sand, Auffüllung, tlw. mit Bauschutt, Schotter etc.	
Korngrößenverteilung - Kornkennzahl T/U/S/G (Erfahrungswert)	s. Abbildung	
Steinanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering bis mittel (Bauschutt, Schotter etc.)	
Blockanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering	
Mineralog. Zusammensetzung der Steine u. Blöcke gem. DIN EN ISO 14689-1	k.A.	
Wichte γ [kN/m³]	16 - 18	
Wassergehalt [%]	k. A.	
Plastizitätszahl nach DIN EN ISO 17892-12 I _P [%]	k. A.	
Konsistenzzahl nach DIN EN ISO 17892-12 I _C [-]	k. A.	
Durchlässigkeit nach der Normenreihe DIN 18130-2 und DIN EN ISO 17892-11	k.A.	
Undränierte Scherfestigkeit nach DIN 4094-4 / DIN EN ISO 17892-7 bis -9 [kN/m²]	k. A.	
Kohäsion gem. DIN 18137-1 bis -3	k. A.	
Lagerungsdichte nach DIN EN ISO 14688-2 / DIN 18126	locker bis mitteldicht	
Sensitivität nach DIN 4094-4	k. A.	
Organischer Anteil nach DIN 18128, Glühverlust [%]	0 - 10	
Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1	k. A.	
Kalkgehalt nach DIN 18129	k. A.	
Sulfatgehalt nach DIN EN 1997-2	mittel abrasiv bis stark abrasiv	
Abrasivitätsbezeichnung (abgeleitet aus dem Cerchar- und dem LCPC-Verfahren)	F1 - F2	
Bodengruppe nach DIN 18196	A [SE, SU, GU, GW, GI]	

k. A.: keine Angabe, da Kennwert / Parameter für Bodenart nicht relevant bzw. für anzuwendende Bauverfahren gem. Normung DIN 18300 ff. nicht gefordert

Körnungsband, Schicht S3 (Sand, Auffüllung, tlw. mit Bauschutt, Schotter etc.)

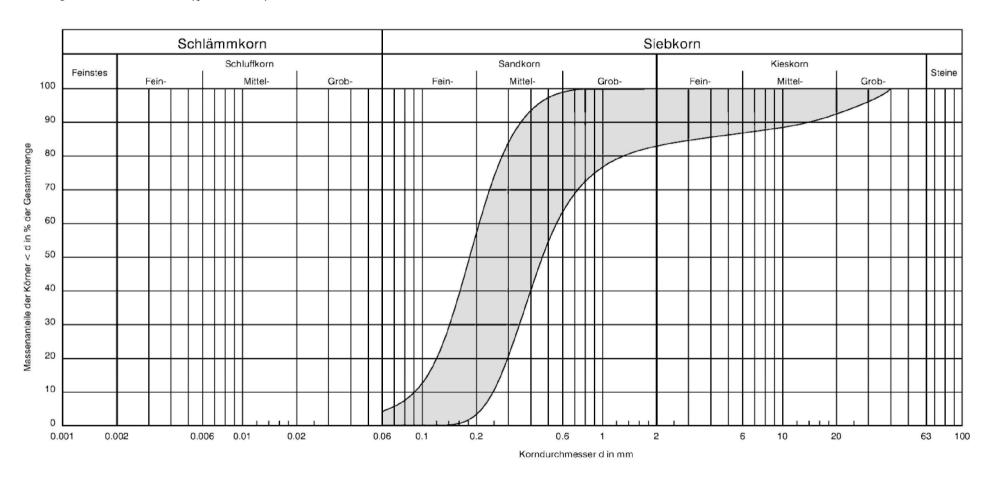


Kennzeichnende Bodeneigenschaften der Schichten (DIN 18300, DIN 18301, DIN 18304, DIN 18319, DIN 18234)

Kannana di Danana akan	Bodenschicht S4	
Kennwert/Parameter		
Bezeichnung	gew. Sand, schluffig, humos	
Korngrößenverteilung - Kornkennzahl T/U/S/G (Erfahrungswert)	s. Abbildung	
Steinanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering	
Blockanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering	
Mineralog. Zusammensetzung der Steine u. Blöcke gem. DIN EN ISO 14689-1	k. A.	
Wichte γ [kN/m³]	16 - 18	
Wassergehalt [%]	k. A.	
Plastizitätszahl nach DIN EN ISO 17892-12 I _P [%]	k. A.	
Konsistenzzahl nach DIN EN ISO 17892-12 I _C [-]	k. A.	
Durchlässigkeit nach der Normenreihe DIN 18130-2 und DIN EN ISO 17892-11	k.A.	
Undränierte Scherfestigkeit nach DIN 4094-4 / DIN EN ISO 17892-7 bis -9 [kN/m²]	k. A.	
Lagerungsdichte nach DIN EN ISO 14688-2 / DIN 18126	locker bis mitteldicht	
Sensitivität nach DIN 4094-4	k. A.	
Organischer Anteil nach DIN 18128, Glühverlust [%]	0 - 10	
Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1	k. A.	
Kalkgehalt nach DIN 18129	k. A.	
Sulfatgehalt nach DIN EN 1997-2	k. A.	
Abrasivitätsbezeichnung (abgeleitet aus dem Cerchar- und dem LCPC-Verfahren)	abrasiv bis stark abrasiv	
Frostempfindlichkeit nach ZTV E-StB	F2 - F3	
Bodengruppe nach DIN 18196	SU, SU*	

k. A.: keine Angabe, da Kennwert / Parameter für Bodenart nicht relevant bzw. für anzuwendende Bauverfahren gem. Normung DIN 18300 ff. nicht gefordert

Körnungsband, Schicht S4 (gew. Sand, schluffig, humos)



Kennzeichnende Bodeneigenschaften der Schichten (DIN 18300, DIN 18301, DIN 18304, DIN 18319, DIN 18234)

Kennwert/Parameter	Bodenschicht	
KennweruParameter	S5	
Bezeichnung	gew. Sand	
Korngrößenverteilung - Kornkennzahl T/U/S/G (Erfahrungswert)	s. Abbildung	
Steinanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering	
Blockanteil nach DIN EN ISO 14688-2 (Erfahrungswert)	gering	
Mineralog. Zusammensetzung der Steine u. Blöcke gem. DIN EN ISO 14689-1	k. A.	
Wichte γ [kN/m ³]	18 - 20	
Wassergehalt [%]	k. A.	
Plastizitätszahl nach DIN EN ISO 17892-12 I _P [%]	k. A.	
Konsistenzzahl nach DIN EN ISO 17892-12 I _C [-]	k. A.	
Durchlässigkeit nach der Normenreihe DIN 18130-2 und DIN EN ISO 17892-11	durchlässig bis stark durchlässig	
Undränierte Scherfestigkeit nach DIN 4094-4 / DIN EN ISO 17892-7 bis -9 [kN/m²]	k. A.	
Lagerungsdichte nach DIN EN ISO 14688-2 / DIN 18126	mitteldicht, tlw. dicht bzw. locker	
Sensitivität nach DIN 4094-4	k. A.	
Organischer Anteil nach DIN 18128, Glühverlust [%]	0 - 2	
Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1	k. A.	
Kalkgehalt nach DIN 18129	< 1 %	
Sulfatgehalt (wasserlöslich)	s. Analysenergebnis Wasserproben Anlage 5.6	
Abrasivitätsbezeichnung (abgeleitet aus dem Cerchar- und dem LCPC-Verfahren)	abrasiv bis stark abrasiv	
Frostempfindlichkeit nach ZTV E-StB	F1 - F2	
Bodengruppe nach DIN 18196	SE	

k. A.: keine Angabe, da Kennwert / Parameter für Bodenart nicht relevant bzw. für anzuwendende Bauverfahren gem. Normung DIN 18300 ff. nicht gefordert

Körnungsband, Schicht S5 (gew. Sand)

